Pilot-scale production of expansile nanoparticles: Practical methods for clinical scale-up.
Clinical translation
Expansile nanoparticle
Microfluidizer
Pilot-scale production
Scale-up
Journal
Journal of controlled release : official journal of the Controlled Release Society
ISSN: 1873-4995
Titre abrégé: J Control Release
Pays: Netherlands
ID NLM: 8607908
Informations de publication
Date de publication:
10 09 2021
10 09 2021
Historique:
received:
19
03
2021
revised:
09
07
2021
accepted:
10
07
2021
pubmed:
20
7
2021
medline:
29
10
2021
entrez:
19
7
2021
Statut:
ppublish
Résumé
One of the foremost challenges in translating nanoparticle technologies to the clinic is the requirement to produce materials on a large-scale. Scaling nanoparticle production methods is often non-trivial, and the success of these endeavors is frequently governed by whether or not an intermediate level of production, i.e., "pilot-scale" production, can be achieved. Pilot-scale production at the one-liter scale serves as a proof-of-concept that large-scale production will be possible. Here, we describe the pilot-scale production of the expansile nanoparticle (eNP) technology including verification of activity and efficacy following scaleup. We describe the challenges of sonication-based emulsification procedures and how these were overcome by use of a Microfluidizer technology. We also describe the problem-solving process that led to pre-polymerization of the nanoparticle polymer-a fundamental change from the lab-scale and previously published methods. Furthermore, we demonstrate good control over particle diameter, polydispersity and drug loading and the ability to sterilize the particles via filtration using this method. To facilitate long-term storage of these larger quantities of particles, we investigated six lyoprotectants and determined that sucrose is the most compatible with the current system. Lastly, we demonstrate that these changes to the manufacturing method do not adversely affect the swelling functionality of the particles, their highly specific localization to tumors, their non-toxicity in vivo or their efficacy in treating established intraperitoneal mesothelioma xenografts.
Identifiants
pubmed: 34280414
pii: S0168-3659(21)00355-2
doi: 10.1016/j.jconrel.2021.07.012
pmc: PMC8489532
mid: NIHMS1740372
pii:
doi:
Substances chimiques
Polymers
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
144-154Subventions
Organisme : NCI NIH HHS
ID : R01 CA232056
Pays : United States
Organisme : NCI NIH HHS
ID : R43 CA250780
Pays : United States
Organisme : NCI NIH HHS
ID : R43 CA189215
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA227433
Pays : United States
Organisme : NCI NIH HHS
ID : R44 CA189215
Pays : United States
Organisme : NCI NIH HHS
ID : R43 CA213538
Pays : United States
Informations de copyright
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.
Références
Nanomedicine (Lond). 2016 May;11(9):1001-15
pubmed: 27078118
Int J Pharm. 2003 May 12;257(1-2):169-80
pubmed: 12711172
J Thorac Cardiovasc Surg. 2020 Sep;160(3):e159-e168
pubmed: 32044093
Biomacromolecules. 2014 Oct 13;15(10):3753-65
pubmed: 25180545
ACS Nano. 2017 Feb 28;11(2):1466-1477
pubmed: 28099801
J Am Chem Soc. 2009 Feb 25;131(7):2469-71
pubmed: 19182897
Biomaterials. 2011 Jan;32(3):832-40
pubmed: 21044799
Sci Rep. 2016 Jan 07;6:18720
pubmed: 26740245
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 May;9(3):
pubmed: 28185434
Adv Drug Deliv Rev. 2006 Dec 30;58(15):1688-713
pubmed: 17118485
Ann Surg Oncol. 2013 May;20(5):1684-93
pubmed: 23128939
Biomacromolecules. 2015 Jul 13;16(7):1958-66
pubmed: 26053219
Biomaterials. 2016 Sep;102:175-86
pubmed: 27343465
Nanoscale. 2013 Apr 21;5(8):3496-504
pubmed: 23487041
Nano Lett. 2008 Sep;8(9):2906-12
pubmed: 18656990
Nanomedicine (Lond). 2014 Apr;9(4):501-16
pubmed: 24910878
Langmuir. 2010 Aug 17;26(16):13086-96
pubmed: 20000620