Observing the silent world under COVID-19 with a comprehensive impact analysis based on human mobility.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 07 2021
19 07 2021
Historique:
received:
31
03
2021
accepted:
30
06
2021
entrez:
20
7
2021
pubmed:
21
7
2021
medline:
24
7
2021
Statut:
epublish
Résumé
Since spring 2020, the human world seems to be exceptionally silent due to mobility reduction caused by the COVID-19 pandemic. To better measure the real-time decline of human mobility and changes in socio-economic activities in a timely manner, we constructed a silent index (SI) based on Google's mobility data. We systematically investigated the relations between SI, new COVID-19 cases, government policy, and the level of economic development. Results showed a drastic impact of the COVID-19 pandemic on increasing SI. The impact of COVID-19 on human mobility varied significantly by country and place. Bi-directional dynamic relationships between SI and the new COVID-19 cases were detected, with a lagging period of one to two weeks. The travel restriction and social policies could immediately affect SI in one week; however, could not effectively sustain in the long run. SI may reflect the disturbing impact of disasters or catastrophic events on the activities related to the global or national economy. Underdeveloped countries are more affected by the COVID-19 pandemic.
Identifiants
pubmed: 34282180
doi: 10.1038/s41598-021-94060-4
pii: 10.1038/s41598-021-94060-4
pmc: PMC8289815
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14691Subventions
Organisme : National Natural Science Foundation of China
ID : 41801164
Organisme : China Association for Science and Technology
ID : 20200608CG072501
Informations de copyright
© 2021. The Author(s).
Références
Economic and Social Council, United Nations, in Progress towards the Sustainable Development Goals. (2020).
Transition from pandemic. Nat. Sustain. 3, 345–345 https://doi.org/10.1038/s41893-020-0546-1 (2020).
Nguyen, M. H. et al. Changes in digital communication during the COVID-19 global pandemic: Implications for digital inequality and future research. Soc. Media Soc. 6, 29 (2020).
Hsiang, S. et al. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 584, 262–267 (2020).
pubmed: 32512578
doi: 10.1038/s41586-020-2404-8
Lai, S. et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature 585, 410–413 (2020).
pubmed: 32365354
pmcid: 7116778
doi: 10.1038/s41586-020-2293-x
Bonaccorsi, G. et al. Economic and social consequences of human mobility restrictions under COVID-19. Proc. Natl. Acad. Sci. 117, 15530–15535 (2020).
pubmed: 32554604
pmcid: 7355033
doi: 10.1073/pnas.2007658117
Susskind, D. & Vines, D. The economics of the COVID-19 pandemic: an assessment. Oxf. Rev. Econ. Policy 36, S1–S13 (2020).
doi: 10.1093/oxrep/graa036
Gössling, S., Scott, D. & Hall, C. M. Pandemics, tourism and global change: a rapid assessment of COVID-19. J. Sustain. Tour. 3, 1–20 (2020).
Guerriero, C., Haines, A. & Pagano, M. Health and sustainability in post-pandemic economic policies. Nat. Sustain. 3, 494–496 (2020).
doi: 10.1038/s41893-020-0563-0
Alon, T. M., Doepke, M., Olmstead-Rumsey, J. & Tertilt, M. The impact of COVID-19 on gender equality. Nat. Sustain. 4, 16 (2020).
Van Lancker, W. & Parolin, Z. COVID-19, school closures, and child poverty: a social crisis in the making. The Lancet Public Health 5, e243–e244 (2020).
pubmed: 32275858
pmcid: 7141480
doi: 10.1016/S2468-2667(20)30084-0
Sumner, A., Hoy, C. & Ortiz-Juarez, E. Estimates of the Impact of COVID-19 on Global Poverty. UNU-WIDER, April 800–9 https://doi.org/10.35188/UNU-WIDER/2020/800-9 (2020).
Brownstein, J. S., Freifeld, C. C. & Madoff, L. C. Digital disease detection—harnessing the Web for public health surveillance. N. Engl. J. Med. 360, 2153 (2009).
pubmed: 19423867
pmcid: 2917042
doi: 10.1056/NEJMp0900702
Szocska, M. et al. Countrywide population movement monitoring using mobile devices generated (big) data during the COVID-19 crisis. Sci. Rep. 11, 5943 (2021).
pubmed: 33723282
pmcid: 7961025
doi: 10.1038/s41598-021-81873-6
Kang, Y. et al. Multiscale dynamic human mobility flow dataset in the US during the COVID-19 epidemic. Scientific data 7, 1–13 (2020).
doi: 10.1038/s41597-020-00734-5
Huang, X. et al. The characteristics of multi-source mobility datasets and how they reveal the luxury nature of social distancing in the U.S. during the COVID-19 pandemic. Int. J. Digital Earth 14, 424–442 (2021).
doi: 10.1080/17538947.2021.1886358
Warren, M. S. & Skillman, S. W. Mobility changes in response to COVID-19. arXiv preprint arXiv:2003.14228 (2020).
Huang, X., Li, Z., Jiang, Y., Li, X. & Porter, D. Twitter reveals human mobility dynamics during the COVID-19 pandemic. PloS One 15, e0241957 (2020).
pubmed: 33170889
pmcid: 7654838
doi: 10.1371/journal.pone.0241957
Chinazzi, M. et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 368, 395 (2020).
pubmed: 32144116
pmcid: 7164386
doi: 10.1126/science.aba9757
Kraemer, M. U. G. et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368, 493 (2020).
doi: 10.1126/science.abb4218
pubmed: 32213647
Tian, H. et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 368, 638 (2020).
pubmed: 32234804
pmcid: 7164389
doi: 10.1126/science.abb6105
Schlosser, F. et al. COVID-19 lockdown induces disease-mitigating structural changes in mobility networks. Proc. Natl. Acad. Sci. 117, 32883–32890 (2020).
pubmed: 33273120
pmcid: 7776901
doi: 10.1073/pnas.2012326117
Oh, J. et al. How well does societal mobility restriction help control the COVID-19 pandemic? Evidence from real-time evaluation. https://doi.org/10.2139/ssrn.3706748 (2020).
Xiong, C., Hu, S., Yang, M., Luo, W. & Zhang, L. Mobile device data reveal the dynamics in a positive relationship between human mobility and COVID-19 infections. Proc. Natl. Acad. Sci. 117, 27087–27089 (2020).
pubmed: 33060300
pmcid: 7959523
doi: 10.1073/pnas.2010836117
Lasry, A. et al. Timing of community mitigation and changes in reported COVID-19 and community mobility-four US metropolitan areas, February 26–April 1, 2020. Morb. Mortal. Wkly Rep. 69, 451–457 (2020).
doi: 10.15585/mmwr.mm6915e2
Gao, S. et al. Association of mobile phone location data indications of travel and stay-at-home mandates with covid-19 infection rates in the us. JAMA Netw. Open 3, e2020485–e2020485 (2020).
pubmed: 32897373
pmcid: 7489834
doi: 10.1001/jamanetworkopen.2020.20485
McKenzie, G. & Adams, B. A country comparison of place-based activity response to COVID-19 policies. Appl. Geogr. 125, 102363 (2020).
pubmed: 33162624
pmcid: 7604168
doi: 10.1016/j.apgeog.2020.102363
Yilmazkuday, H. Stay-at-home works to fight against COVID-19: International evidence from Google mobility data. J. Hum. Behav. Soc. Environ. 31, 210–220 (2021).
doi: 10.1080/10911359.2020.1845903
Cartenì, A., Di Francesco, L. & Martino, M. How mobility habits influenced the spread of the COVID-19 pandemic: Results from the Italian case study. Sci. Total Environ. 741, 140489 (2020).
pubmed: 32599395
pmcid: 7313484
doi: 10.1016/j.scitotenv.2020.140489
Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584, 257–261 (2020).
pubmed: 32512579
doi: 10.1038/s41586-020-2405-7
Frias-Martinez, V., Virseda, J. & Frias-Martinez, E. Socio-economic levels and human mobility. in Qual meets quant workshop-QMQ 1–6 (2010).
Soto, V., Frias-Martinez, V., Virseda, J. & Frias-Martinez, E. Prediction of socioeconomic levels using cell phone records. in 377–388 (Springer, 2011).
Pappalardo, L., Pedreschi, D., Smoreda, Z. & Giannotti, F. Using big data to study the link between human mobility and socio-economic development. in 2015 IEEE International Conference on Big Data (Big Data) 871–878 (IEEE, 2015).
Xu, Y., Belyi, A., Bojic, I. & Ratti, C. Human mobility and socioeconomic status: analysis of Singapore and Boston. Comput. Environ. Urban Syst. 72, 51–67 (2018).
doi: 10.1016/j.compenvurbsys.2018.04.001
Lee, W. D., Qian, M. & Schwanen, T. The association between socioeconomic status and mobility reductions in the early stage of England’s COVID-19 epidemic. Health Place 69, 102563–102563 (2021).
pubmed: 33799134
doi: 10.1016/j.healthplace.2021.102563
Huang, X. et al. Staying at home is a privilege: evidence from fine-grained mobile phone location data in the United States during the COVID-19 pandemic. Ann. Am. Assoc. Geogr. 2, 1–20 (2021).
Gates, B. Responding to Covid-19—a once-in-a-century pandemic?. N. Engl. J. Med. 382, 1677–1679 (2020).
pubmed: 32109012
doi: 10.1056/NEJMp2003762
Hale, T., Petherick, A., Phillips, T. & Webster, S. Variation in government responses to COVID-19. Blavatnik Sch. Gov. Work. Pap. 31, 150 (2020).
Chen, K., Wang, M., Huang, C., Kinney, P. L. & Anastas, P. T. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. The Lancet Planetary Health 4, e210–e212 (2020).
pubmed: 32411944
pmcid: 7220178
doi: 10.1016/S2542-5196(20)30107-8
Mofijur, M. et al. Impact of COVID-19 on the social, economic, environmental and energy domains: Lessons learnt from a global pandemic. Sustain. Prod. Consum. 3, 67 (2020).
United Nations. A UN framework for the immediate socio-economic response to COVID-19. (2020).
Lenzen, M. et al. Global socio-economic losses and environmental gains from the Coronavirus pandemic. PLoS One 15, e0235654 (2020).
pubmed: 32645023
pmcid: 7347123
doi: 10.1371/journal.pone.0235654
Liu, H., Fang, C. & Gao, Q. Evaluating the real-time impact of COVID-19 on Cities: China as a case study. Complexity 2020, 1169 (2020).
doi: 10.1155/2020/8855521
Fernandes, N. Economic effects of coronavirus outbreak (COVID-19) on the world economy. Available at SSRN 3557504 (2020).
World Bank. Global Economic Prospects, June 2020. (The World Bank, 2020).
Cartenì, A., Di Francesco, L. & Martino, M. How mobility habits influenced the spread of the COVID-19 pandemic: Results from the Italian case study. Sci. Total Environ. 741, 140489 (2020).
pubmed: 32599395
pmcid: 7313484
doi: 10.1016/j.scitotenv.2020.140489
Baena-Díez, J. M., Barroso, M., Cordeiro-Coelho, S. I., Díaz, J. L. & Grau, M. Impact of COVID-19 outbreak by income: hitting hardest the most deprived. J. Public Health 42, 698–703 (2020).
doi: 10.1093/pubmed/fdaa136
Huang, X. et al. Time-series clustering for home dwell time during COVID-19: what can we learn from it?. ISPRS Int. J. Geo Inf. 9, 675 (2020).
doi: 10.3390/ijgi9110675
Haug, N. et al. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat. Hum. Behav. 2, 1–10 (2020).
Scala, A. et al. Time, space and social interactions: exit mechanisms for the Covid-19 epidemics. Sci. Rep. 10, 13764 (2020).
pubmed: 32792591
pmcid: 7426873
doi: 10.1038/s41598-020-70631-9
Cornwall, W. Can you put a price on COVID-19 options? Experts weigh lives versus economics. Science 10, 13 (2020).
Askitas, N., Tatsiramos, K. & Verheyden, B. Estimating worldwide effects of non-pharmaceutical interventions on COVID-19 incidence and population mobility patterns using a multiple-event study. Sci. Rep. 11, 1972 (2021).
pubmed: 33479325
pmcid: 7820317
doi: 10.1038/s41598-021-81442-x
Li, R. et al. Global COVID-19 pandemic demands joint interventions for the suppression of future waves. Proc. Natl. Acad. Sci. 117, 26151–26157 (2020).
pubmed: 32989148
pmcid: 7585010
doi: 10.1073/pnas.2012002117
Walker, P. G. et al. The impact of COVID-19 and strategies for mitigation and suppression in low-and middle-income countries. Science 2, 17 (2020).
Cheng, Y., Liu, H., Wang, S., Cui, X. & Li, Q. Global action on SDGs: policy review and outlook in a post-pandemic Era. Sustainability 13, 20 (2021).
Carson, R. Silent spring. (Houghton Mifflin Harcourt, 1962).
Murtagh, F. & Contreras, P. Algorithms for hierarchical clustering: an overview, II. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7, 1219 (2017).
doi: 10.1002/widm.1219
Warnes, M. G. R., Bolker, B., Bonebakker, L., Gentleman, R. & Huber, W. Package ‘gplots’. Various R Programming Tools for Plotting Data (2016).
Love, I. & Zicchino, L. Financial development and dynamic investment behavior: Evidence from panel VAR. Q. Rev. Econ. Finance 46, 190–210 (2006).
doi: 10.1016/j.qref.2005.11.007
Charfeddine, L. & Kahia, M. Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: a panel vector autoregressive (PVAR) analysis. Renewable Energy 139, 198–213 (2019).
doi: 10.1016/j.renene.2019.01.010
Binder, M. & Coad, A. An examination of the dynamics of well-being and life events using vector autoregressions. J. Econ. Behav. Organ. 76, 352–371 (2010).
doi: 10.1016/j.jebo.2010.06.006
Perron, P. The great crash, the oil price shock, and the unit root hypothesis. Econometrica J. Econ. Soc. 9, 1361–1401 (1989).
doi: 10.2307/1913712
Enders, W. Applied econometric time series (Wiley, 2008).