Clinical and genomic characterization of 8p cytogenomic disorders.
Journal
Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
27
11
2020
accepted:
29
06
2021
revised:
29
06
2021
pubmed:
21
7
2021
medline:
23
3
2022
entrez:
20
7
2021
Statut:
ppublish
Résumé
To provide a detailed clinical and cytogenomic summary of individuals with chromosome 8p rearrangements of invdupdel(8p), del(8p), and dup(8p). We enrolled 97 individuals with invdupdel(8p), del(8p), and dup(8p). Clinical and molecular data were collected to delineate and compare the clinical findings and rearrangement breakpoints. We included additional 5 individuals with dup(8p) from the literature for a total of 102 individuals. Eighty-one individuals had recurrent rearrangements of invdupdel(8p) (n = 49), del(8p)_distal (n = 4), del(8p)_proximal (n = 9), del(8p)_proximal&distal (n = 12), and dup(8p)_proximal (n = 7). Twenty-one individuals had nonrecurrent rearrangements. While all individuals had neurodevelopmental features, the frequency and severity of clinical findings were higher in individuals with invdupdel(8p), and with larger duplications. All individuals with GATA4 deletion had structural congenital heart defects; however, the presence of structural heart defects in some individuals with normal GATA4 copy number suggests there are other potentially contributing gene(s) on 8p. Our study may inform families and health-care providers about the associated clinical findings and severity in individuals with chromosome 8p rearrangements, and guide researchers in investigating the underlying molecular and biological mechanisms by providing detailed clinical and cytogenomic information about individuals with distinct 8p rearrangements.
Identifiants
pubmed: 34282301
doi: 10.1038/s41436-021-01270-2
pii: S1098-3600(21)05449-6
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2342-2351Informations de copyright
© 2021. The Author(s), under exclusive licence to the American College of Medical Genetics and Genomics.
Références
Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. 2016;17:224–38.
doi: 10.1038/nrg.2015.25
Weckselblatt B, Rudd MK. Human structural variation: mechanisms of chromosome rearrangements. Trends Genet. 2015;31:587–99.
doi: 10.1016/j.tig.2015.05.010
Weleber RG, Verma RS, Kimberling WJ, Fieger HG, Lubs HA. Duplication-deficiency of the short arm of chromosome 8 following artificial insemination. Ann Genet. 1976;19:241–7.
pubmed: 1087853
Giglio S, Broman KW, Matsumoto N, Calvari V, Gimelli G, Neumann T, et al. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet. 2001;68:874–83.
doi: 10.1086/319506
Puvabanditsin S, Gengel N, Botti C, Jacob M, Jalil M, Cabrera K, et al. 8p 11 Microduplication is associated with neonatal stridor. Mol Syndromol. 2019;9:324–7.
doi: 10.1159/000494796
Barber JC, Rosenfeld JA, Foulds N, Laird S, Bateman MS, Thomas NS, et al. 8p23.1 duplication syndrome; common, confirmed, and novel features in six further patients. Am J Med Genet A. 2013;161A:487–500.
doi: 10.1002/ajmg.a.35767
Weber A, Köhler A, Hahn A, Müller U. 8p23.1 duplication syndrome: narrowing of critical interval to 1.80 Mbp. Mol Cytogenet. 2014;7:94.
doi: 10.1186/s13039-014-0094-3
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.
doi: 10.1038/s41586-020-2308-7
Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 2010;6:e1001154.
doi: 10.1371/journal.pgen.1001154
Chou JH, Roumiantsev S, Singh R. Peditools electronic growth chart calculators: applications in clinical care research, and quality improvement. J Med Internet Res. 2020;22:e16204.
doi: 10.2196/16204
Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.
doi: 10.1186/1471-2431-13-59
Wat MJ, Beck TF, Hernández-García A, Yu Z, Veenma D, Garcia M, et al. Mouse model reveals the role of SOX7 in the development of congenital diaphragmatic hernia associated with recurrent deletions of 8p23.1. Hum Mol Genet. 2012;21:4115–25.
doi: 10.1093/hmg/dds241
Doyle MJ, Magli A, Estharabadi N, Amundsen D, Mills LJ, Martin CM. Sox7 regulates lineage decisions in cardiovascular progenitor cells. Stem Cells Dev. 2019;28:1089–103.
doi: 10.1089/scd.2019.0040
Yu L, Hernan RR, Wynn J, Chung WK. The influence of genetics in congenital diaphragmatic hernia. Semin Perinatol. 2020;44:151169.
doi: 10.1053/j.semperi.2019.07.008
García-Santiago FA, Martínez-Glez V, Santos F, García-Miñaur S, Mansilla E, Meneses AG, et al. Analysis of invdupdel(8p) rearrangement: Clinical, cytogenetic and molecular characterization. Am J Med Genet A. 2015;167A:1018–25.
doi: 10.1002/ajmg.a.36879
Fisch GS, Davis R, Youngblom J, Gregg J. Genotype-phenotype association studies of chromosome 8p inverted duplication deletion syndrome. Behav Genet. 2011;41:373–80.
doi: 10.1007/s10519-011-9447-4
Ballarati L, Cereda A, Caselli R, Selicorni A, Recalcati MP, Maitz S, et al. Genotype-phenotype correlations in a new case of 8p23.1 deletion and review of the literature. Eur J Med Genet. 2011;54:55–9.
doi: 10.1016/j.ejmg.2010.10.003
Liu P, Carvalho CMB, Hastings PJ, Lupski JR. Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev. 2012;22:211–220.
doi: 10.1016/j.gde.2012.02.012
Lupski JR. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 1998;14:417–22.
doi: 10.1016/S0168-9525(98)01555-8
Distler MG, Opal MD, Dulawa SC, Palmer AA. Assessment of behaviors modeling aspects of schizophrenia in Csmd1 mutant mice. PLoS One. 2012;7:e51235.
doi: 10.1371/journal.pone.0051235
Steen VM, Nepal C, Ersland KM, Holdhus R, Nævdal M, Ratvik SM, et al. Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1. PLoS One. 2013;8:e79501.
doi: 10.1371/journal.pone.0079501
Kraus DM, Elliott GS, Chute H, Horan T, Pfenninger KH, Sanford SD, et al. CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J. Immunol. 2006;176:4419–30.
doi: 10.4049/jimmunol.176.7.4419
Deneault E, White SH, Rodrigues DC, Ross PJ, Faheem M, Zaslavsky K, et al. Complete disruption of autism-susceptibility genes by gene editing predominantly reduces functional connectivity of isogenic human neurons. Stem Cell Rep. 2018;11:1211–25.
doi: 10.1016/j.stemcr.2018.10.003
Jiang-Xie L-F, Liao HM, Chen CH, Chen YT, Ho SY, Lu DH, et al. Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits. Mol Autism. 2014;5:32.
doi: 10.1186/2040-2392-5-32
Rasmussen AH, Rasmussen HB, Silahtaroglu A. The DLGAP family: neuronal expression, function and role in brain disorders. Mol Brain. 2017;10:43.
doi: 10.1186/s13041-017-0324-9
Athanasiu L, Giddaluru S, Fernandes C, Christoforou A, Reinvang I, Lundervold AJ, et al. A genetic association study of CSMD1 and CSMD2 with cognitive function. Brain Behav Immun. 2017;61:209–16.
doi: 10.1016/j.bbi.2016.11.026
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.
doi: 10.1038/nature13595
Wynn J, Aspelund G, Zygmunt A, Stolar CJ, Mychaliska G, Butcher J, et al. Developmental outcomes of children with congenital diaphragmatic hernia: a multicenter prospective study. J Pediatr Surg. 2013;48:1995–2004.
doi: 10.1016/j.jpedsurg.2013.02.041