Animal Models of Tinnitus Treatment: Cochlear and Brain Stimulation.

Animal model Auditory and limbic brain structures Behavioral assays Brain stimulation Cochlear stimulation Tinnitus

Journal

Current topics in behavioral neurosciences
ISSN: 1866-3370
Titre abrégé: Curr Top Behav Neurosci
Pays: Germany
ID NLM: 101535383

Informations de publication

Date de publication:
2021
Historique:
pubmed: 21 7 2021
medline: 1 9 2021
entrez: 20 7 2021
Statut: ppublish

Résumé

Neuromodulation, via stimulation of a variety of peripheral and central structures, is used to suppress tinnitus. However, investigative limitations in humans due to ethical reasons have made it difficult to decipher the mechanisms underlying treatment-induced tinnitus relief, so a number of animal models have arisen to address these unknowns. This chapter reviews animal models of cochlear and brain stimulation and assesses their modulatory effects on behavioral evidence of tinnitus and its related neural correlates. When a structure is stimulated, localized modulation, often presenting as downregulation of spontaneous neuronal spike firing rate, bursting and neurosynchrony, occurs within the brain area. Through anatomical projections and transmitter pathways, the interventions activate both auditory- and non-auditory structures by taking bottom-up ascending and top-down descending modes to influence their target brain structures. Furthermore, it is the brain oscillations that cochlear or brain stimulation evoke and connect the prefrontal cortex, striatal systems, and other limbic structures to refresh neural networks and relieve auditory, attentive, conscious, as well as emotional reactive aspects of tinnitus. This oscillatory neural network connectivity is achieved via the thalamocorticothalamic circuitry including the lemniscal and non-lemniscal auditory brain structures. Beyond existing technologies, the review also reveals opportunities for developing advanced animal models using new modalities to achieve precision neuromodulation and tinnitus abatement, such as optogenetic cochlear and/or brain stimulation.

Identifiants

pubmed: 34282563
doi: 10.1007/7854_2021_227
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

83-129

Informations de copyright

© 2021. Springer Nature Switzerland AG.

Références

Adamchic I et al (2014) Abnormal cross-frequency coupling in the tinnitus network. Front Neurosci 8:284
pubmed: 25309309 pmcid: 4174755 doi: 10.3389/fnins.2014.00284
Adjamian P et al (2012) Neuromagnetic indicators of tinnitus and tinnitus masking in patients with and without hearing loss. J Assoc Res Otolaryngol 13:715–731
pubmed: 22791191 pmcid: 3441951 doi: 10.1007/s10162-012-0340-5
Ahn MH, Hong SK, Min BK (2017) The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus. Hear Res 356:63–73
pubmed: 29097049 doi: 10.1016/j.heares.2017.10.008
Ahsan SF et al (2018) An animal model of deep brain stimulation for treating tinnitus: a proof of concept study. Laryngoscope 128:1213–1222
pubmed: 28925013 doi: 10.1002/lary.26876
Araneda R et al (2018) A key role of the prefrontal cortex in the maintenance of chronic tinnitus: an fMRI study using a Stroop task. Neuroimage Clin 17:325–334
pubmed: 29159044 doi: 10.1016/j.nicl.2017.10.029
Argence M et al (2008) Stimulation by cochlear implant in unilaterally deaf rats reverses the decrease of inhibitory transmission in the inferior colliculus. Eur J Neurosci 28:1589–1602
pubmed: 18973578 doi: 10.1111/j.1460-9568.2008.06454.x
Arts RA et al (2012) Review: cochlear implants as a treatment of tinnitus in single-sided deafness. Curr Opin Otolaryngol Head Neck Surg 20:398–403
pubmed: 22931903 doi: 10.1097/MOO.0b013e3283577b66
Arts RA et al (2015) Tinnitus suppression by Intracochlear electrical stimulation in single-sided deafness: a prospective clinical trial – part I. Audiol Neurootol 20:294–313
pubmed: 26227468 doi: 10.1159/000381936
Atencio CA et al (2014) Primary auditory cortical responses to electrical stimulation of the thalamus. J Neurophysiol 111:1077–1087
pubmed: 24335216 doi: 10.1152/jn.00749.2012
Axelsson A, Ringdahl A (1989) Tinnitus – a study of its prevalence and characteristics. Br J Audiol 23:53–62
pubmed: 2784987 doi: 10.3109/03005368909077819
Baguley DM, Atlas MD (2007) Cochlear implants and tinnitus. Prog Brain Res 166:347–355
pubmed: 17956799 doi: 10.1016/S0079-6123(07)66033-6
Barry KM et al (2015) Modulation of medial geniculate nucleus neuronal activity by electrical stimulation of the nucleus accumbens. Neuroscience 308:1–10
pubmed: 26349008 doi: 10.1016/j.neuroscience.2015.09.008
Barry KM, Robertson D, Mulders W (2019) Changes in auditory thalamus neural firing patterns after acoustic trauma in rats. Hear Res 379:89–97
pubmed: 31108284 doi: 10.1016/j.heares.2019.05.001
Basta D et al (2015) Bilateral changes of spontaneous activity within the central auditory pathway upon chronic unilateral intracochlear electrical stimulation. Otol Neurotol 36:1759–1765
pubmed: 26571409 doi: 10.1097/MAO.0000000000000894
Bauer CA et al (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86:2564–2578
pubmed: 18438941 pmcid: 2614665 doi: 10.1002/jnr.21699
Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A 98:11818–11823
pubmed: 11573015 pmcid: 58814 doi: 10.1073/pnas.191355898
Boyden ES et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268
pubmed: 16116447 doi: 10.1038/nn1525 pmcid: 16116447
Calixto R et al (2013) Investigation of a new electrode array technology for a central auditory prosthesis. PLoS One 8:e82148
pubmed: 24312638 pmcid: 3846787 doi: 10.1371/journal.pone.0082148
Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14:506–515
pubmed: 20932795 pmcid: 3359652 doi: 10.1016/j.tics.2010.09.001
Canolty RT et al (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628
pubmed: 16973878 pmcid: 2628289 doi: 10.1126/science.1128115
Cardin JA et al (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667
pubmed: 19396156 pmcid: 3655711 doi: 10.1038/nature08002
Casquero-Veiga M et al (2016) Response to deep brain stimulation in three brain targets with implications in mental disorders: a PET study in rats. PLoS One 11:e0168689
pubmed: 28033356 pmcid: 5199108 doi: 10.1371/journal.pone.0168689
Cavdar S et al (2018) Afferent projections of the subthalamic nucleus in the rat: emphasis on bilateral and interhemispheric connections. Acta Neurobiol Exp (Wars) 78:251–263
Chen YC et al (2017) Resting-state brain abnormalities in chronic subjective tinnitus: a meta-analysis. Front Hum Neurosci 11:22
pubmed: 28174532 pmcid: 5258692
Chen YC et al (2018) Alterations of the default mode network and cognitive impairment in patients with unilateral chronic tinnitus. Quant Imaging Med Surg 8:1020–1029
pubmed: 30598879 pmcid: 6288058 doi: 10.21037/qims.2018.11.04
Chen JJ et al (2020) Association of central noninvasive brain stimulation interventions with efficacy and safety in tinnitus management: a meta-analysis. JAMA Otolaryngol Head Neck Surg 146:801–809
pubmed: 32644131 doi: 10.1001/jamaoto.2020.1497
Cheung SW, Larson PS (2010) Tinnitus modulation by deep brain stimulation in locus of caudate neurons (area LC). Neuroscience 169:1768–1778
pubmed: 20541595 doi: 10.1016/j.neuroscience.2010.06.007
Cheung SW et al (2019) Phase I trial of caudate deep brain stimulation for treatment-resistant tinnitus. J Neurosurg:1–10
Claes L et al (2014) Auditory cortex tACS and tRNS for tinnitus: single versus multiple sessions. Neural Plast 2014:436713
pubmed: 25587455 pmcid: 4283418 doi: 10.1155/2014/436713
Coomes DL, Schofield RM, Schofield BR (2005) Unilateral and bilateral projections from cortical cells to the inferior colliculus in guinea pigs. Brain Res 1042:62–72
pubmed: 15823254 doi: 10.1016/j.brainres.2005.02.015
Crandall SR, Cruikshank SJ, Connors BW (2015) A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron 86:768–782
pubmed: 25913856 pmcid: 4425600 doi: 10.1016/j.neuron.2015.03.040
Crocetti A et al (2009) Questionnaires to evaluate anxiety and depressive levels in tinnitus patients. Otolaryngol Head Neck Surg 140:403–405
pubmed: 19248952 doi: 10.1016/j.otohns.2008.11.036
Daneshi A et al (2005) Auditory electrical tinnitus suppression in patients with and without implants. Int Tinnitus J 11:85–91
pubmed: 16419698
Darrow KN et al (2015) Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways. Brain Res 1599:44–56
pubmed: 25481416 doi: 10.1016/j.brainres.2014.11.044
Davis PB, Paki B, Hanley PJ (2007) Neuromonics tinnitus treatment: third clinical trial. Ear Hear 28:242–259
pubmed: 17496674 doi: 10.1097/AUD.0b013e3180312619
de Mena L, Rizk P, Rincon-Limas DE (2018) Bringing light to transcription: the optogenetics repertoire. Front Genet 9:518
pubmed: 30450113 pmcid: 6224442 doi: 10.3389/fgene.2018.00518
De Ridder D, Vanneste S (2012) EEG driven tDCS versus bifrontal tDCS for tinnitus. Front Psych 3:84
De Ridder D et al (2006) Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J Otorhinolaryngol Relat Spec 68:48–54
pubmed: 16514263 doi: 10.1159/000090491
De Ridder D et al (2007) Electrical stimulation of auditory and somatosensory cortices for treatment of tinnitus and pain. Prog Brain Res 166:377–388
pubmed: 17956802 doi: 10.1016/S0079-6123(07)66036-1
De Ridder D et al (2010) Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. J Neurosurg 112:1289–1294
pubmed: 19911891 doi: 10.3171/2009.10.JNS09298
De Ridder D et al (2011) Theta-gamma dysrhythmia and auditory phantom perception. J Neurosurg 114:912–921
pubmed: 21235308 doi: 10.3171/2010.11.JNS10335
De Ridder D et al (2012) Dorsolateral prefrontal cortex transcranial magnetic stimulation and electrode implant for intractable tinnitus. World Neurosurg 77:778–784
pubmed: 22120273 doi: 10.1016/j.wneu.2011.09.009
De Ridder D et al (2014a) Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 17:170–179
pubmed: 24255953 doi: 10.1111/ner.12127
De Ridder D, Vanneste S, Freeman W (2014b) The Bayesian brain: phantom percepts resolve sensory uncertainty. Neurosci Biobehav Rev 44:4–15
pubmed: 22516669 doi: 10.1016/j.neubiorev.2012.04.001
De Ridder D et al (2014c) An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev 44:16–32
pubmed: 23597755 doi: 10.1016/j.neubiorev.2013.03.021
De Ridder D et al (2015) Thalamocortical dysrhythmia: a theoretical update in tinnitus. Front Neurol 6:124
pubmed: 26106362 pmcid: 4460809 doi: 10.3389/fneur.2015.00124
De Ridder D, Joos K, Vanneste S (2016) Anterior cingulate implants for tinnitus: report of 2 cases. J Neurosurg 124:893–901
pubmed: 26314996 doi: 10.3171/2015.3.JNS142880 pmcid: 26314996
Deklerck AN et al (2020) Invasive neuromodulation as a treatment for tinnitus: a systematic review. Neuromodulation 23:451–462
pubmed: 31524324 doi: 10.1111/ner.13042
Deschenes M, Veinante P, Zhang ZW (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev 28:286–308
pubmed: 9858751 doi: 10.1016/S0165-0173(98)00017-4
Di NW et al (2009) Transtympanic electrical stimulation for immediate and long-term tinnitus suppression. Int Tinnitus J 15:100–106
Dieter A et al (2019) Near physiological spectral selectivity of cochlear optogenetics. Nat Commun 10:1962
pubmed: 31036812 pmcid: 6488702 doi: 10.1038/s41467-019-09980-7
Dieter A, Keppeler D, Moser T (2020) Towards the optical cochlear implant: optogenetic approaches for hearing restoration. EMBO Mol Med 12:e11618
pubmed: 32227585 pmcid: 7136966
DiGuiseppi J, Zuo J (2019) The awesome power of optogenetics in hearing research. Neurosci Lett 701:175–179
pubmed: 30822439 doi: 10.1016/j.neulet.2019.02.037
Dong C et al (2020) Low-frequency repetitive transcranial magnetic stimulation for the treatment of chronic tinnitus: a systematic review and meta-analysis of randomized controlled trials. Biomed Res Int 2020:3141278
pubmed: 32461976 pmcid: 7218966
Eggermont JJ (2015) The auditory cortex and tinnitus – a review of animal and human studies. Eur J Neurosci 41:665–676
pubmed: 25728183 doi: 10.1111/ejn.12759
Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27:676–682
pubmed: 15474168 doi: 10.1016/j.tins.2004.08.010
Engelhardt J et al (2014) Effect of chronic cortical stimulation on chronic severe tinnitus: a prospective randomized double-blind cross-over trial and long-term follow up. Brain Stimul 7:694–700
pubmed: 25017670 doi: 10.1016/j.brs.2014.05.008
Engineer ND et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470:101–104
pubmed: 21228773 pmcid: 3295231 doi: 10.1038/nature09656
Faber M et al (2012) Top down prefrontal affective modulation of tinnitus with multiple sessions of tDCS of dorsolateral prefrontal cortex. Brain Stimul 5:492–498
pubmed: 22019079 doi: 10.1016/j.brs.2011.09.003
Fallon JB, Irvine DR, Shepherd RK (2008) Cochlear implants and brain plasticity. Hear Res 238:110–117
pubmed: 17910997 doi: 10.1016/j.heares.2007.08.004
Fallon JB, Irvine DR, Shepherd RK (2009) Neural prostheses and brain plasticity. J Neural Eng 6:065008
pubmed: 19850976 pmcid: 2935525 doi: 10.1088/1741-2560/6/6/065008
Fallon JB, Shepherd RK, Irvine DR (2014) Effects of chronic cochlear electrical stimulation after an extended period of profound deafness on primary auditory cortex organization in cats. Eur J Neurosci 39:811–820
pubmed: 24325274 doi: 10.1111/ejn.12445
Fernandes NF et al (2020) Auditory and language skills in children with auditory brainstem implants. Int J Pediatr Otorhinolaryngol 132:110010
pubmed: 32234651 doi: 10.1016/j.ijporl.2020.110010
Firestone E, Luo H, Pace E, Liu B, Agabigum B, Zhu L, Zhang XG, Moran J, Zhang JS (2019) Pathology-specific brain oscillations serve as underpinnings of tinnitus and its modulation. Assoc Res Otolaryngol Abs 804:501
Folmer RL et al (2006) Effects of repetitive transcranial magnetic stimulation (rTMS) on chronic tinnitus. Acta Otolaryngol Suppl:96–101
Folmer RL et al (2015) Repetitive transcranial magnetic stimulation treatment for chronic tinnitus: a randomized clinical trial. JAMA Otolaryngol Head Neck Surg 141:716–722
pubmed: 26181507 doi: 10.1001/jamaoto.2015.1219
Friedland DR et al (2007) Feasibility of auditory cortical stimulation for the treatment of tinnitus. Otol Neurotol 28:1005–1012
pubmed: 18043428 doi: 10.1097/MAO.0b013e318159ebf5
Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224
pubmed: 19400723 doi: 10.1146/annurev.neuro.051508.135603
Gault R, McGinnity TM, Coleman S (2018) A computational model of thalamocortical dysrhythmia in people with tinnitus. IEEE Trans Neural Syst Rehabil Eng 26:1845–1857
pubmed: 30106678 doi: 10.1109/TNSRE.2018.2863740
Gerken GM, Saunders SS, Paul RE (1984) Hypersensitivity to electrical stimulation of auditory nuclei follows hearing loss in cats. Hear Res 13:249–259
pubmed: 6735932 doi: 10.1016/0378-5955(84)90078-9
Ghafouri S et al (2019) Deep brain stimulation restores the glutamatergic and GABAergic synaptic transmission and plasticity to normal levels in kindled rats. PLoS One 14:e0224834
pubmed: 31697763 pmcid: 6837391 doi: 10.1371/journal.pone.0224834
Gilles A et al (2020) Neural substrates of tinnitus in an auditory brainstem implant patient: a preliminary molecular imaging study using H2 15 O-PET including a 5-year follow-up of auditory performance and tinnitus perception. Otol Neurotol 41:e15–e20
pubmed: 31821261 doi: 10.1097/MAO.0000000000002474
Godbehere J et al (2019) Treatment of tinnitus using theta burst based repetitive transcranial magnetic stimulation-a single blinded randomized control trial. Otol Neurotol 40:S38–S42
pubmed: 31225821 doi: 10.1097/MAO.0000000000002207
Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A 86:1698–1702
pubmed: 2922407 pmcid: 286768 doi: 10.1073/pnas.86.5.1698
Gray CM et al (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337
pubmed: 2922061 doi: 10.1038/338334a0
Halassa MM et al (2014) State-dependent architecture of thalamic reticular subnetworks. Cell 158:808–821
pubmed: 25126786 pmcid: 4205482 doi: 10.1016/j.cell.2014.06.025
Hasson D et al (2011) Stress and prevalence of hearing problems in the Swedish working population. BMC Public Health 11:130
pubmed: 21345187 pmcid: 3056746 doi: 10.1186/1471-2458-11-130
Henry KS et al (2016) Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain. J Neurophysiol 115:1905–1916
pubmed: 26843608 pmcid: 4869485 doi: 10.1152/jn.01003.2015
Hitier M et al (2020) The effects of selective electrical stimulation of the rat cochlea on hippocampal field potentials. Hear Res 395:108023
pubmed: 32702613 doi: 10.1016/j.heares.2020.108023
Holz EM et al (2010) Theta-gamma phase synchronization during memory matching in visual working memory. Neuroimage 52:326–335
pubmed: 20382239 doi: 10.1016/j.neuroimage.2010.04.003 pmcid: 20382239
Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179
pubmed: 17717690 doi: 10.1007/s00429-007-0150-4
House JW, Brackmann DE (1981) Tinnitus: surgical treatment. Ciba Found Symp 85:204–216
pubmed: 6915835
Hullfish J et al (2019) Frontostriatal network dysfunction as a domain-general mechanism underlying phantom perception. Hum Brain Mapp 40:2241–2251
pubmed: 30648324 pmcid: 6865744 doi: 10.1002/hbm.24521
Ito J, Sakakihara J (1994) Tinnitus suppression by electrical stimulation of the cochlear wall and by cochlear implantation. Laryngoscope 104:752–754
pubmed: 8196452 doi: 10.1288/00005537-199406000-00017
Jackson P (1985) A comparison of the effects of eighth nerve section with lidocaine on tinnitus. J Laryngol Otol 99:663–666
pubmed: 4020258 doi: 10.1017/S0022215100097449
Jacobs J, Kahana MJ (2010) Direct brain recordings fuel advances in cognitive electrophysiology. Trends Cogn Sci 14:162–171
pubmed: 20189441 pmcid: 2847661 doi: 10.1016/j.tics.2010.01.005
Jahnsen H, Llinas R (1984a) Ionic basis for the electro-responsiveness and oscillatory properties of Guinea-pig thalamic neurones in vitro. J Physiol 349:227–247
pubmed: 6737293 pmcid: 1199335 doi: 10.1113/jphysiol.1984.sp015154
Jahnsen H, Llinas R (1984b) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226
pubmed: 6737292 pmcid: 1199334 doi: 10.1113/jphysiol.1984.sp015153
Jakobs M, Lozano AM (2019) Editorial. Deep brain stimulation for tinnitus: exploring the frontier between sensory perception and awareness. J Neurosurg:1–4
Jang SH, Yeo SS (2014) Thalamocortical connections between the mediodorsal nucleus of the thalamus and prefrontal cortex in the human brain: a diffusion tensor tractographic study. Yonsei Med J 55:709–714
pubmed: 24719138 pmcid: 3990063 doi: 10.3349/ymj.2014.55.3.709
Jastreboff PJ, Jastreboff MM (2000) Tinnitus retraining therapy (TRT) as a method for treatment of tinnitus and hyperacusis patients. J Am Acad Audiol 11:162–177
pubmed: 10755812 pmcid: 10755812
Johansen-Berg H et al (2008) Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex 18:1374–1383
pubmed: 17928332 doi: 10.1093/cercor/bhm167 pmcid: 17928332
Kahlbrock N, Weisz N (2008) Transient reduction of tinnitus intensity is marked by concomitant reductions of delta band power. BMC Biol 6:4
pubmed: 18199318 pmcid: 2254377 doi: 10.1186/1741-7007-6-4
Kalappa BI et al (2014) Single unit hyperactivity and bursting in the auditory thalamus of awake rats directly correlates with behavioural evidence of tinnitus. J Physiol 592:5065–5078
pubmed: 25217380 pmcid: 4259543 doi: 10.1113/jphysiol.2014.278572
Keppeler D et al (2018) Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized chronos. EMBO J:37
Khatoun A, Asamoah B, Mc Laughlin M (2019) Investigating the feasibility of epicranial cortical stimulation using concentric-ring electrodes: a novel minimally invasive neuromodulation method. Front Neurosci 13:773
pubmed: 31396045 pmcid: 6667561 doi: 10.3389/fnins.2019.00773
Kiang NY, Liberman MC, Levine RA (1976) Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds. Ann Otol Rhinol Laryngol 85:752–768
pubmed: 999140 doi: 10.1177/000348947608500605 pmcid: 999140
Kim K et al (2015) A novel method for device-related electroencephalography artifact suppression to explore cochlear implant-related cortical changes in single-sided deafness. J Neurosci Methods 255:22–28
pubmed: 26231621 doi: 10.1016/j.jneumeth.2015.07.020 pmcid: 26231621
Klinke R et al (1999) Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285:1729–1733
pubmed: 10481008 doi: 10.1126/science.285.5434.1729 pmcid: 10481008
Komiya H, Eggermont JJ (2000) Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Otolaryngol 120:750–756
pubmed: 11099153 doi: 10.1080/000164800750000298
Konig O et al (2006) Course of hearing loss and occurrence of tinnitus. Hear Res 221:59–64
pubmed: 16962270 doi: 10.1016/j.heares.2006.07.007
Kral A et al (1998) Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear Res 121:11–28
pubmed: 9682804 doi: 10.1016/S0378-5955(98)00061-6
Krauss P et al (2016) Stochastic resonance controlled upregulation of internal noise after hearing loss as a putative cause of tinnitus-related neuronal hyperactivity. Front Neurosci 10:597
pubmed: 28082861 pmcid: 5187388 doi: 10.3389/fnins.2016.00597
Krauss P et al (2017) Adaptive stochastic resonance for unknown and variable input signals. Sci Rep 7:2450
pubmed: 28550314 pmcid: 5446399 doi: 10.1038/s41598-017-02644-w
Kreuzer PM et al (2017) Individualized repetitive transcranial magnetic stimulation treatment in chronic tinnitus? Front Neurol 8:126
pubmed: 28428769 pmcid: 5382205 doi: 10.3389/fneur.2017.00126
Kreuzer PM et al (2019) Daily high-frequency transcranial random noise stimulation of bilateral temporal cortex in chronic tinnitus – a pilot study. Sci Rep 9:12274
pubmed: 31439873 pmcid: 6706578 doi: 10.1038/s41598-019-48686-0
Lachowska M et al (2020) Detailed insight in intraoperative eABR measurements to assist auditory brainstem implantation in a patient with neurofibromatosis type 2. Acta Neurol Belg 120:1371–1378
pubmed: 31749088 doi: 10.1007/s13760-019-01248-7
Langguth B (2020) Non-invasive neuromodulation for tinnitus. J Audiol Otol 24:113–118
pubmed: 32575951 pmcid: 7364190 doi: 10.7874/jao.2020.00052
Langguth B, Elgoyhen AB (2012) Current pharmacological treatments for tinnitus. Expert Opin Pharmacother 13:2495–2509
pubmed: 23121658 doi: 10.1517/14656566.2012.739608
Lavin A, Grace AA (1996) Physiological properties of rat ventral pallidal neurons recorded intracellularly in vivo. J Neurophysiol 75:1432–1443
pubmed: 8727388 doi: 10.1152/jn.1996.75.4.1432
Leaver AM et al (2011) Dysregulation of limbic and auditory networks in tinnitus. Neuron 69:33–43
pubmed: 21220097 pmcid: 3092532 doi: 10.1016/j.neuron.2010.12.002
Ledoux JE, Farb C, Ruggiero DA (1990) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. Hear Res 10:1043–1054
Lee DJ et al (2019) Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J Neurosurg 131:333–342
pubmed: 31370011 doi: 10.3171/2019.4.JNS181761 pmcid: 31370011
Li LP et al (2019) Steady-state auditory evoked fields reflect long-term effects of repetitive transcranial magnetic stimulation in tinnitus. Clin Neurophysiol 130:1665–1672
pubmed: 31336329 doi: 10.1016/j.clinph.2019.05.022 pmcid: 31336329
Liberman T, Velluti RA, Pedemonte M (2009) Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs. Brain Res 1298:70–77
pubmed: 19716364 doi: 10.1016/j.brainres.2009.08.061
Lim HH, Lenarz T (2015) Auditory midbrain implant: research and development towards a second clinical trial. Hear Res 322:212–223
pubmed: 25613994 pmcid: 4417550 doi: 10.1016/j.heares.2015.01.006
Lin X et al (2020) Altered topological patterns of Gray matter networks in tinnitus: a graph-theoretical-based study. Front Neurosci 14:541
pubmed: 32536854 pmcid: 7267018 doi: 10.3389/fnins.2020.00541
Llinas RR et al (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96:15222–15227
pubmed: 10611366 pmcid: 24801 doi: 10.1073/pnas.96.26.15222
Llinas R et al (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28:325–333
pubmed: 15927689 doi: 10.1016/j.tins.2005.04.006 pmcid: 15927689
Luo H et al (2012) Tinnitus suppression by electrical stimulation of the rat dorsal cochlear nucleus. Neurosci Lett 522:16–20
pubmed: 22683504 doi: 10.1016/j.neulet.2012.05.072 pmcid: 22683504
Lv H et al (2020) Altered functional connectivity of the thalamus in tinnitus patients is correlated with symptom alleviation after sound therapy. Brain Imaging Behav 14:2668–2678
pubmed: 31900891 doi: 10.1007/s11682-019-00218-0 pmcid: 31900891
Mager T et al (2018) High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat Commun 9:1750
pubmed: 29717130 pmcid: 5931537 doi: 10.1038/s41467-018-04146-3
Malmierca MS et al (2002) Direct projections from cochlear nuclear complex to auditory thalamus in the rat. J Neurosci 22:10891–10897
pubmed: 12486183 pmcid: 6758437 doi: 10.1523/JNEUROSCI.22-24-10891.2002
Marcondes RA et al (2010) Repetitive transcranial magnetic stimulation improve tinnitus in normal hearing patients: a double-blind controlled, clinical and neuroimaging outcome study. Eur J Neurol 17:38–44
pubmed: 19614962 doi: 10.1111/j.1468-1331.2009.02730.x pmcid: 19614962
Marks KL et al (2018) Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci Transl Med 10
Martel DT, Pardo-Garcia TR, Shore SE (2019) Dorsal Cochlear nucleus fusiform-cell plasticity is altered in salicylate-induced tinnitus. Neuroscience 407:170–181
pubmed: 30217755 doi: 10.1016/j.neuroscience.2018.08.035 pmcid: 30217755
Mauger SJ et al (2012) An in vivo investigation of inferior colliculus single neuron responses to cochlear nucleus pulse train stimulation. J Neurophysiol 108:2999–3008
pubmed: 22972959 doi: 10.1152/jn.01087.2011 pmcid: 22972959
McCreery D, Han M, Pikov V (2010) Neuronal activity evoked in the inferior colliculus of the cat by surface macroelectrodes and penetrating microelectrodes implanted in the cochlear nucleus. IEEE Trans Biomed Eng 57:1765–1773
pubmed: 20483692 doi: 10.1109/TBME.2010.2046169 pmcid: 20483692
McCreery D et al (2013) Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate. J Neural Eng 10:056010
pubmed: 23928683 doi: 10.1088/1741-2560/10/5/056010 pmcid: 23928683
McCreery D, Yadev K, Han M (2018) Responses of neurons in the feline inferior colliculus to modulated electrical stimuli applied on and within the ventral cochlear nucleus; implications for an advanced auditory brainstem implant. Hear Res 363:85–97
pubmed: 29573880 pmcid: 5940528 doi: 10.1016/j.heares.2018.03.009
McCullough LD, Sokolowski JD, Salamone JD (1993) A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance. Neuroscience 52:919–925
pubmed: 8450978 doi: 10.1016/0306-4522(93)90538-Q
McFerran DJ et al (2019) Why is there no cure for tinnitus? Front Neurosci 13:802
pubmed: 31447630 pmcid: 6691100 doi: 10.3389/fnins.2019.00802
Melloni L et al (2007) Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci 27:2858–2865
pubmed: 17360907 pmcid: 6672558 doi: 10.1523/JNEUROSCI.4623-06.2007
Meltzer NE, Ryugo DK (2006) Projections from auditory cortex to cochlear nucleus: a comparative analysis of rat and mouse. Anat Rec A Discov Mol Cell Evol Biol 288:397–408
pubmed: 16550586 pmcid: 2613945 doi: 10.1002/ar.a.20300
Mertens G, De Bodt M, Van de Heyning P (2016) Cochlear implantation as a long-term treatment for ipsilateral incapacitating tinnitus in subjects with unilateral hearing loss up to 10 years. Hear Res 331:1–6
pubmed: 26433053 doi: 10.1016/j.heares.2015.09.016
Min HK et al (2016) Dopamine release in the nonhuman primate caudate and putamen depends upon site of stimulation in the subthalamic nucleus. J Neurosci 36:6022–6029
pubmed: 27251623 pmcid: 4887566 doi: 10.1523/JNEUROSCI.0403-16.2016
Minami SB et al (2015) Auditory resting-state functional connectivity in tinnitus and modulation with transcranial direct current stimulation. Acta Otolaryngol 135:1286–1292
pubmed: 26181225 doi: 10.3109/00016489.2015.1068952
Mitchell AS (2015) The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev 54:76–88
pubmed: 25757689 doi: 10.1016/j.neubiorev.2015.03.001
Miyakawa A et al (2019) Tinnitus correlates with downregulation of cortical glutamate decarboxylase 65 expression but not auditory cortical map reorganization. J Neurosci 39:9989–10001
pubmed: 31704784 pmcid: 6978940 doi: 10.1523/JNEUROSCI.1117-19.2019
Mogenson GJ et al (1987) Ventral pallidum projections to mediodorsal nucleus of the thalamus: an anatomical and electrophysiological investigation in the rat. Brain Res 404:221–230
pubmed: 3032332 doi: 10.1016/0006-8993(87)91373-4
Mohsen S et al (2019) Multisite transcranial random noise stimulation (tRNS) modulates the distress network activity and oscillatory powers in subjects with chronic tinnitus. J Clin Neurosci 67:178–184
pubmed: 31266717 doi: 10.1016/j.jocn.2019.06.033
Møller AR (2011) Anatomy and physiology of the auditory system. Springer, New York
doi: 10.1007/978-1-60761-145-5_8
Mulders WH, Spencer TC, Robertson D (2016a) Effects of pulsatile electrical stimulation of the round window on central hyperactivity after cochlear trauma in guinea pig. Hear Res 335:128–137
pubmed: 26970475 doi: 10.1016/j.heares.2016.03.001
Mulders WH et al (2016b) The effects of repetitive transcranial magnetic stimulation in an animal model of tinnitus. Sci Rep 6:38234
pubmed: 27905540 pmcid: 5131273 doi: 10.1038/srep38234
Mulders W et al (2019) Low-intensity repetitive transcranial magnetic stimulation over prefrontal cortex in an animal model alters activity in the auditory thalamus but does not affect behavioural measures of tinnitus. Exp Brain Res 237:883–896
pubmed: 30649586 doi: 10.1007/s00221-018-05468-w
Neuheiser A et al (2010) Effects of pulse phase duration and location of stimulation within the inferior colliculus on auditory cortical evoked potentials in a guinea pig model. J Assoc Res Otolaryngol 11:689–708
pubmed: 20717834 pmcid: 2975884 doi: 10.1007/s10162-010-0229-0
Norena AJ, Mulders WH, Robertson D (2015) Suppression of putative tinnitus-related activity by extra-cochlear electrical stimulation. J Neurophysiol 113:132–143
pubmed: 25298390 doi: 10.1152/jn.00580.2014
Nozaradan S et al (2017) Intracerebral evidence of rhythm transform in the human auditory cortex. Brain Struct Funct 222:2389–2404
pubmed: 27990557 doi: 10.1007/s00429-016-1348-0
O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15:3622–3639
pubmed: 7751934 pmcid: 6578219 doi: 10.1523/JNEUROSCI.15-05-03622.1995
O’Donnell P et al (1997) Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus. J Neurosci 17:2143–2167
pubmed: 9045740 pmcid: 6793770 doi: 10.1523/JNEUROSCI.17-06-02143.1997
O'Driscoll M, El-Deredy W, Ramsden RT (2011) Brain stem responses evoked by stimulation of the mature cochlear nucleus with an auditory brain stem implant. Ear Hear 32:286–299
pubmed: 21157353 doi: 10.1097/AUD.0b013e3181fc9d72
Offutt SJ et al (2014) Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus. J Neural Eng 11:066001
pubmed: 25307351 pmcid: 4244264 doi: 10.1088/1741-2560/11/6/066001
Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219
pubmed: 10731217 doi: 10.1093/cercor/10.3.206 pmcid: 10731217
Pages DS et al (2016) Effects of electrical stimulation in the inferior colliculus on frequency discrimination by rhesus monkeys and implications for the auditory midbrain implant. J Neurosci 36:5071–5083
pubmed: 27147659 pmcid: 4854969 doi: 10.1523/JNEUROSCI.3540-15.2016
Perreau A, Tyler R, Mancini PC (2020) Programming a Cochlear implant for tinnitus suppression. J Am Acad Audiol 31:302–308
pubmed: 32323291 doi: 10.3766/jaaa.18086 pmcid: 32323291
Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev 46:1–31
pubmed: 15297152 doi: 10.1016/j.brainresrev.2004.04.008
Plewnia C (2018) Transcranial brain stimulation for the treatment of tinnitus: positive lessons from a negative trial. Brain Stimul 11:1–2
pubmed: 29037789 doi: 10.1016/j.brs.2017.10.001 pmcid: 29037789
Plewnia C et al (2012) Treatment of chronic tinnitus with theta burst stimulation: a randomized controlled trial. Neurology 78:1628–1634
pubmed: 22539568 doi: 10.1212/WNL.0b013e3182574ef9
Poncet-Wallet C et al (2020) Prospective multicentric follow-up study of Cochlear implantation in adults with single-sided deafness: tinnitus and audiological outcomes. Otol Neurotol 41:458–466
pubmed: 32176124 doi: 10.1097/MAO.0000000000002564
Quass GL et al (2018) Electrical stimulation of the midbrain excites the auditory cortex asymmetrically. Brain Stimul 11:1161–1174
pubmed: 29853311 doi: 10.1016/j.brs.2018.05.009
Rauschecker JP, Leaver AM, Muhlau M (2010) Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66:819–826
pubmed: 20620868 pmcid: 2904345 doi: 10.1016/j.neuron.2010.04.032
Rauschecker JP et al (2015) Frontostriatal gating of tinnitus and chronic pain. Trends Cogn Sci 19:567–578
pubmed: 26412095 pmcid: 4587397 doi: 10.1016/j.tics.2015.08.002
Roberts LE, Moffat G, Bosnyak DJ (2006) Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Otolaryngol Suppl:27–33
Roberts DS et al (2017) Tinnitus suppression after auditory brainstem implantation in patients with neurofibromatosis type-2. Otol Neurotol 38:118–122
pubmed: 27755361 doi: 10.1097/MAO.0000000000001230
Rode T et al (2013) Neural representation in the auditory midbrain of the envelope of vocalizations based on a peripheral ear model. Front Neural Circuits 7:166
pubmed: 24155694 pmcid: 3800787 doi: 10.3389/fncir.2013.00166
Rotge JY et al (2012) The associative and limbic thalamus in the pathophysiology of obsessive-compulsive disorder: an experimental study in the monkey. Transl Psychiatry 2:e161
pubmed: 23010765 pmcid: 3565210 doi: 10.1038/tp.2012.88
Rubinstein JT et al (2003) Electrical suppression of tinnitus with high-rate pulse trains. Otol Neurotol 24:478–485
pubmed: 12806303 doi: 10.1097/00129492-200305000-00021 pmcid: 12806303
Ryugo DK et al (2010) Synaptic plasticity after chemical deafening and electrical stimulation of the auditory nerve in cats. J Comp Neurol 518:1046–1063
pubmed: 20127807 pmcid: 2935524 doi: 10.1002/cne.22262
Sadeghi M et al (2019) A neural ensemble correlation code for sound category identification. PLoS Biol 17:e3000449
pubmed: 31574079 pmcid: 6788721 doi: 10.1371/journal.pbio.3000449
Sahlsten H et al (2019) Neuronavigated versus non-navigated repetitive transcranial magnetic stimulation for chronic tinnitus: a randomized study. Trends Hear 23:2331216518822198
pubmed: 30803387 pmcid: 6327327
Sametsky EA et al (2015) Enhanced GABAA-mediated tonic inhibition in auditory thalamus of rats with behavioral evidence of tinnitus. J Neurosci 35:9369–9380
pubmed: 26109660 pmcid: 4478253 doi: 10.1523/JNEUROSCI.5054-14.2015
Sasso V et al (2016) Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury. J Neuroinflammation 13:150
pubmed: 27301743 pmcid: 4908713 doi: 10.1186/s12974-016-0616-5
Schecklmann M et al (2016) Neuronavigated left temporal continuous theta burst stimulation in chronic tinnitus. Restor Neurol Neurosci 34:165–175
pubmed: 26890094 pmcid: 26890094
Schierholz I et al (2017) Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: an EEG study. Hum Brain Mapp 38:2206–2225
pubmed: 28130910 pmcid: 6866801 doi: 10.1002/hbm.23515
Schwippel T et al (2019) Clinical review: the therapeutic use of theta-burst stimulation in mental disorders and tinnitus. Prog Neuropsychopharmacol Biol Psychiatry 92:285–300
pubmed: 30707989 doi: 10.1016/j.pnpbp.2019.01.014 pmcid: 30707989
Sedley W et al (2012) Single-subject oscillatory gamma responses in tinnitus. Brain 135:3089–3100
pubmed: 22975389 pmcid: 3470708 doi: 10.1093/brain/aws220
Sedley W et al (2015a) Intracranial mapping of a cortical tinnitus system using residual inhibition. Curr Biol 25:1208–1214
pubmed: 25913402 pmcid: 4425458 doi: 10.1016/j.cub.2015.02.075
Sedley W et al (2015b) Human auditory cortex neurochemistry reflects the presence and severity of tinnitus. J Neurosci 35:14822–14828
pubmed: 26538652 pmcid: 4635131 doi: 10.1523/JNEUROSCI.2695-15.2015
Seeley WW et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356
pubmed: 17329432 pmcid: 2680293 doi: 10.1523/JNEUROSCI.5587-06.2007
Seidman MD et al (2008) Direct electrical stimulation of Heschl’s gyrus for tinnitus treatment. Laryngoscope 118:491–500
pubmed: 18094653 doi: 10.1097/MLG.0b013e31815daf5a
Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear.Res. 180:28–38
pubmed: 12782350 doi: 10.1016/S0378-5955(03)00074-1 pmcid: 12782350
Shaaya M, Fauser J, Karginov AV (2021) Optogenetics: the art of illuminating complex signaling pathways. Physiology (Bethesda) 36:52–60
Shekhawat GS et al (2016) Intensity, duration, and location of high-definition transcranial direct current stimulation for tinnitus relief. Neurorehabil Neural Repair 30:349–359
pubmed: 26180052 doi: 10.1177/1545968315595286 pmcid: 26180052
Shi Y et al (2009) Deep brain stimulation effects in patients with tinnitus. Otolaryngol Head Neck Surg 141:285–287
pubmed: 19643267 doi: 10.1016/j.otohns.2009.05.020 pmcid: 19643267
Shore SE, Roberts LE, Langguth B (2016) Maladaptive plasticity in tinnitus – triggers, mechanisms and treatment. Nat Rev Neurol 12:150–160
pubmed: 26868680 pmcid: 4895692 doi: 10.1038/nrneurol.2016.12
Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(49–65):111–125
Smit JV et al (2016a) The impact of deep brain stimulation on tinnitus. Surg Neurol Int 7:S848–S854
pubmed: 27994936 pmcid: 5134112 doi: 10.4103/2152-7806.194156
Smit JV et al (2016b) Deep brain stimulation of the inferior colliculus in the rodent suppresses tinnitus. Brain Res 1650:118–124
pubmed: 27592136 doi: 10.1016/j.brainres.2016.08.046 pmcid: 27592136
Smit JV et al (2017) Hearing assessment during deep brain stimulation of the central nucleus of the inferior colliculus and dentate cerebellar nucleus in rat. PeerJ 5:e3892
pubmed: 29018625 pmcid: 5633028 doi: 10.7717/peerj.3892
Soleimani R, Jalali MM, Hasandokht T (2016) Therapeutic impact of repetitive transcranial magnetic stimulation (rTMS) on tinnitus: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 273:1663–1675
pubmed: 25968009 doi: 10.1007/s00405-015-3642-5 pmcid: 25968009
Song JJ et al (2017) A quantitative electroencephalography study on Cochlear implant-induced cortical changes in single-sided deafness with tinnitus. Front Hum Neurosci 11:210
pubmed: 28572760 pmcid: 5435818 doi: 10.3389/fnhum.2017.00210
Soussi T, Otto SR (1994) Effects of electrical brainstem stimulation on tinnitus. Acta Otolaryngol 114:135–140
pubmed: 8203193 doi: 10.3109/00016489409126031 pmcid: 8203193
Souza DDS et al (2020) Transcranial direct current stimulation improves tinnitus perception and modulates cortical electrical activity in patients with tinnitus: a randomized clinical trial. Neurophysiol Clin 50:289–300
pubmed: 32863109 doi: 10.1016/j.neucli.2020.07.002 pmcid: 32863109
Spitzer B, Haegens S (2017) Beyond the status quo: a role for beta oscillations in endogenous content (re)activation. eNeuro 4
Steriade M et al (1991) Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci U S A 88:4396–4400
pubmed: 2034679 pmcid: 51666 doi: 10.1073/pnas.88.10.4396
Stevens C et al (2007) Severe tinnitus and its effect on selective and divided attention. Int J Audiol 46:208–216
pubmed: 17487668 doi: 10.1080/14992020601102329 pmcid: 17487668
Suga N et al (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci U S A 97:11807–11814
pubmed: 11050213 pmcid: 34353 doi: 10.1073/pnas.97.22.11807
Tae WS et al (2018) Changes in the regional shape and volume of subcortical nuclei in patients with tinnitus comorbid with mild hearing loss. Neuroradiology 60:1203–1211
pubmed: 30206673 doi: 10.1007/s00234-018-2093-2
Tort AB et al (2008) Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A 105:20517–20522
pubmed: 19074268 pmcid: 2629291 doi: 10.1073/pnas.0810524105
Tunkel DE et al (2014) Clinical practice guideline: tinnitus executive summary. Otolaryngol Head Neck Surg 151:533–541
pubmed: 25274374 doi: 10.1177/0194599814547475
Ueyama T et al (2013) Brain regions responsible for tinnitus distress and loudness: a resting-state FMRI study. PLoS One 8:e67778
pubmed: 23825684 pmcid: 3692468 doi: 10.1371/journal.pone.0067778
Vachicouras N et al (2019) Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Sci Transl Med 11(514):eaax9487
pubmed: 31619546 doi: 10.1126/scitranslmed.aax9487
van der Loo E et al (2009) Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS One 4:e7396
pubmed: 19816597 pmcid: 2754613 doi: 10.1371/journal.pone.0007396
van Zwieten G et al (2019) Inhibition of experimental tinnitus with high frequency stimulation of the rat medial geniculate body. Neuromodulation 22:416–424
pubmed: 30102446 doi: 10.1111/ner.12795
Vanneste S, De Ridder D (2011) Bifrontal transcranial direct current stimulation modulates tinnitus intensity and tinnitus-distress-related brain activity. Eur J Neurosci 34:605–614
pubmed: 21790807 doi: 10.1111/j.1460-9568.2011.07778.x
Vanneste S et al (2010) The neural correlates of tinnitus-related distress. Neuroimage 52:470–480
pubmed: 20417285 doi: 10.1016/j.neuroimage.2010.04.029
Vanneste S, Langguth B, De Ridder D (2011a) Do tDCS and TMS influence tinnitus transiently via a direct cortical and indirect somatosensory modulating effect? A combined TMS-tDCS and TENS study. Brain Stimul 4:242–252
pubmed: 22032739 doi: 10.1016/j.brs.2010.12.001
Vanneste S, van de Heyning P, De Ridder D (2011b) The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients. Eur J Neurosci 34:718–731
pubmed: 21848924 doi: 10.1111/j.1460-9568.2011.07793.x pmcid: 21848924
Vanneste S, Fregni F, De Ridder D (2013a) Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus. Front Psych 4:158
Vanneste S et al (2013b) Comparing immediate transient tinnitus suppression using tACS and tDCS: a placebo-controlled study. Exp Brain Res 226:25–31
pubmed: 23314693 doi: 10.1007/s00221-013-3406-7
Vanneste S et al (2017) Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: an exploratory retrospective study. Sci Rep 7:17345
pubmed: 29230011 pmcid: 5725594 doi: 10.1038/s41598-017-17750-y
Verma R, Jha A, Singh S (2019) Functional near-infrared spectroscopy to probe tDCS-induced cortical functioning changes in tinnitus. J Int Adv Otol 15:321–325
pubmed: 31347512 pmcid: 6750800 doi: 10.5152/iao.2019.6022
Vianney-Rodrigues P, Iancu OD, Welsh JP (2011) Gamma oscillations in the auditory cortex of awake rats. Eur J Neurosci 33(1):119–129
pubmed: 21059115 doi: 10.1111/j.1460-9568.2010.07487.x
Vianney-Rodrigues P, Auerbach BD, Salvi R (2019) Aberrant thalamocortical coherence in an animal model of tinnitus. J Neurophysiol 121:893–907
pubmed: 30625004 pmcid: 6520628 doi: 10.1152/jn.00053.2018
Wang ZM et al (2015) Auditory rehabilitation in rhesus macaque monkeys (Macaca mulatta) with auditory brainstem implants. Chin Med J (Engl) 128:1363–1369
doi: 10.4103/0366-6999.156783
Wang TC et al (2018a) Effect of transcranial direct current stimulation in patients with tinnitus: a meta-analysis and systematic review. Ann Otol Rhinol Laryngol 127:79–88
pubmed: 29192507 doi: 10.1177/0003489417744317 pmcid: 29192507
Wang W et al (2018b) Blocking tumor necrosis factor-alpha expression prevents blast-induced excitatory/inhibitory synaptic imbalance and parvalbumin-positive interneuron loss in the hippocampus. J Neurotrauma 35:2306–2316
pubmed: 29649942 doi: 10.1089/neu.2018.5688
Wang W et al (2019) Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biol 17:e3000307
pubmed: 31211773 pmcid: 6581239 doi: 10.1371/journal.pbio.3000307
Wegger M, Ovesen T, Larsen DG (2017) Acoustic coordinated reset neuromodulation: a systematic review of a novel therapy for tinnitus. Front Neurol 8:36
pubmed: 28243221 pmcid: 5304262 doi: 10.3389/fneur.2017.00036
Weiss RS, Voss A, Hemmert W (2016) Optogenetic stimulation of the cochlea-a review of mechanisms, measurements, and first models. Network 27:212–236
pubmed: 27644125 doi: 10.1080/0954898X.2016.1224944
Weisz N et al (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med 2:e153
pubmed: 15971936 pmcid: 1160568 doi: 10.1371/journal.pmed.0020153
Weisz N et al (2007) The neural code of auditory phantom perception. J Neurosci 27:1479–1484
pubmed: 17287523 pmcid: 6673575 doi: 10.1523/JNEUROSCI.3711-06.2007
Wenzel GI et al (2014) Non-penetrating round window electrode stimulation for tinnitus therapy followed by cochlear implantation. Eur Arch Otorhinolaryngol 272 (11):3283–3293
Wienbruch C et al (2006) Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus. Neuroimage 33:180–194
pubmed: 16901722 doi: 10.1016/j.neuroimage.2006.06.023
Winne J et al (2019) Salicylate induces anxiety-like behavior and slow theta oscillation and abolishes the relationship between running speed and fast theta oscillation frequency. Hippocampus 29:15–25
pubmed: 30152905 doi: 10.1002/hipo.23021
Wu C, Martel DT, Shore SE (2016) Increased synchrony and bursting of dorsal Cochlear nucleus fusiform cells correlate with tinnitus. J Neurosci 36:2068–2073
pubmed: 26865628 pmcid: 4748084 doi: 10.1523/JNEUROSCI.3960-15.2016
Yang S et al (2011) Homeostatic plasticity drives tinnitus perception in an animal model. Proc Natl Acad Sci U S A 108:14974–14979
pubmed: 21896771 pmcid: 3169130 doi: 10.1073/pnas.1107998108
Yang H et al (2016) Effect of repetitive transcranial magnetic stimulation on auditory function following acoustic trauma. Neurol Sci 37:1511–1516
pubmed: 27230393 doi: 10.1007/s10072-016-2603-0
Yoon KJ, Lee YT, Han TR (2011) Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis? Exp Brain Res 214:549–556
pubmed: 21904929 doi: 10.1007/s00221-011-2853-2
Yuan T et al (2018) Transcranial direct current stimulation for the treatment of tinnitus: a review of clinical trials and mechanisms of action. BMC Neurosci 19:66
pubmed: 30359234 pmcid: 6202858 doi: 10.1186/s12868-018-0467-3
Zaehle T et al (2011) Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res 215:135–140
pubmed: 21964868 doi: 10.1007/s00221-011-2879-5
Zeng FG et al (2011) Tinnitus suppression by low-rate electric stimulation and its electrophysiological mechanisms. Hear Res 277:61–66
pubmed: 21447376 pmcid: 3137665 doi: 10.1016/j.heares.2011.03.010
Zeng FG, Djalilian H, Lin H (2015) Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges. Curr Opin Otolaryngol Head Neck Surg 23:382–387
pubmed: 26208122 pmcid: 4591848 doi: 10.1097/MOO.0000000000000187
Zhang J (2013) Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies. Hear Res 295:38–57
pubmed: 22683861 doi: 10.1016/j.heares.2012.05.007
Zhang J (2019) Blast-induced tinnitus: animal models. J Acoust Soc Am 146:3811
pubmed: 31795642 doi: 10.1121/1.5132551 pmcid: 31795642
Zhang JS, Kaltenbach JA (1998) Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sound. Neurosci Lett 250:197–200
pubmed: 9708866 doi: 10.1016/S0304-3940(98)00482-0
Zhang Y, Suga N (2000) Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats. J Neurophysiol 84:325–333
pubmed: 10899207 doi: 10.1152/jn.2000.84.1.325
Zhang J, Zhang X (2010) Electrical stimulation of the dorsal cochlear nucleus induces hearing in rats. Brain Res 1311:37–50
pubmed: 19941837 doi: 10.1016/j.brainres.2009.11.032
Zhang J, Zhang Y, Zhang X (2011) Auditory cortex electrical stimulation suppresses tinnitus in rats. J Assoc Res Otolaryngol 12:185–201
pubmed: 21057850 doi: 10.1007/s10162-010-0246-z
Zhang L et al (2018) Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in guinea pigs. Hippocampus 29 (8):669–682

Auteurs

Jinsheng Zhang (J)

Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA. jinzhang@wayne.edu.
Department of Communication Sciences and Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, USA. jinzhang@wayne.edu.

Ethan Firestone (E)

Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA.

Ahmed Elattma (A)

Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH