The Quadrature Method: A Novel Dipole Localisation Algorithm for Artificial Lateral Lines Compared to State of the Art.
artificial lateral line
dipole localisation
hydrodynamic imaging
neural networks
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
02 Jul 2021
02 Jul 2021
Historique:
received:
10
05
2021
revised:
17
06
2021
accepted:
28
06
2021
entrez:
20
7
2021
pubmed:
21
7
2021
medline:
23
7
2021
Statut:
epublish
Résumé
The lateral line organ of fish has inspired engineers to develop flow sensor arrays-dubbed artificial lateral lines (ALLs)-capable of detecting near-field hydrodynamic events for obstacle avoidance and object detection. In this paper, we present a comprehensive review and comparison of ten localisation algorithms for ALLs. Differences in the studied domain, sensor sensitivity axes, and available data prevent a fair comparison between these algorithms from their original works. We compare them with our novel quadrature method (QM), which is based on a geometric property specific to 2D-sensitive ALLs. We show how the area in which each algorithm can accurately determine the position and orientation of a simulated dipole source is affected by (1) the amount of training and optimisation data, and (2) the sensitivity axes of the sensors. Overall, we find that each algorithm benefits from 2D-sensitive sensors, with alternating sensitivity axes as the second-best configuration. From the machine learning approaches, an MLP required an impractically large training set to approach the optimisation-based algorithms' performance. Regardless of the data set size, QM performs best with both a large area for accurate predictions and a small tail of large errors.
Identifiants
pubmed: 34283129
pii: s21134558
doi: 10.3390/s21134558
pmc: PMC8271408
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : European Union's Horizon 2020 research and innovation programme
ID : 635568
Organisme : The Flemish Government
ID : Onderzoeksprogramma Artificiële Intelligentie (AI)
Références
Bioinspir Biomim. 2017 Sep 26;12(5):056009
pubmed: 28707626
Sci Rep. 2016 Sep 13;6:32955
pubmed: 27622466
J Comp Physiol A. 1996;178(3):359-71
pubmed: 8583423
Biol Cybern. 2005 Oct;93(4):231-8
pubmed: 16208530
Biol Rev Camb Philos Soc. 1963 Feb;38:51-105
pubmed: 14027866
Bioinspir Biomim. 2010 Mar;5(1):16001
pubmed: 20061601
Phys Rev Lett. 2009 Feb 6;102(5):058104
pubmed: 19257562
J Exp Biol. 2010 Nov 15;213(Pt 22):3819-31
pubmed: 21037061
Sensors (Basel). 2013 Dec 31;14(1):564-74
pubmed: 24385032
Bioinspir Biomim. 2018 Feb 27;13(2):026013
pubmed: 29334081
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18891-5
pubmed: 17132735
IEEE Trans Neural Netw. 2006 Nov;17(6):1411-23
pubmed: 17131657
J R Soc Interface. 2020 Jan;17(162):20190616
pubmed: 31964270
Bioinspir Biomim. 2013 Jun;8(2):026005
pubmed: 23538856
Bioinspir Biomim. 2019 May 03;14(4):041001
pubmed: 30995633
J R Soc Interface. 2015 Oct 6;12(111):20150322
pubmed: 26423435
J Comp Physiol A. 2001 Jul;187(6):453-65
pubmed: 11548992
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Jan;194(1):1-17
pubmed: 18060550
Sci Rep. 2016 Jan 14;6:19336
pubmed: 26763299
Bioinspir Biomim. 2019 Jul 11;14(5):055001
pubmed: 31239415
J Exp Biol. 2006 Apr;209(Pt 8):1548-59
pubmed: 16574811