The impact of different thresholds on optical coherence tomography angiography images binarization and quantitative metrics.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
20 07 2021
20 07 2021
Historique:
received:
24
03
2021
accepted:
09
07
2021
entrez:
21
7
2021
pubmed:
22
7
2021
medline:
22
7
2021
Statut:
epublish
Résumé
Optical coherence tomography angiography (OCTA) provides several data regarding the status of retinal capillaries. This information can be further enlarged by employing quantitative metrics, such as vessel density (VD). A mandatory preliminary step of OCTA quantification is image binarization, a procedure used to highlight retinal capillaries on empty background. Although several binarization thresholds exist, no consensus is reached about the thresholding technique to be used. In this study, we tested thirteen binarization thresholds on a dataset made by thirty volunteers. The aim was to assess the impact of binarization techniques on: (I) detection of retinal capillaries, assessed by the calculation of overlapping percentages between binarized and original images; (II) quantitative OCTA metrics, including VD, vessel tortuosity (VT) and vessel dispersion (Vdisp); (III) foveal avascular zone (FAZ) detection. Our findings showed Huang, Li, Mean and Percentile as highly reliable binarization thresholds (p < 0.05), whereas the worst binarization thresholds were Intermodes, MaxEntropy, RenylEntropy and Yen (p < 0.05). All the thresholds variably underestimated VD metric and FAZ detection, with respect to the original OCTA images, whereas VT and Vdisp turned out to be more stable. The usage of a Fixed threshold resulted extremely useful to reduce VD and FAZ underestimations, although bound to operators' experience.
Identifiants
pubmed: 34285328
doi: 10.1038/s41598-021-94333-y
pii: 10.1038/s41598-021-94333-y
pmc: PMC8292484
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14758Informations de copyright
© 2021. The Author(s).
Références
PLoS One. 2020 Mar 20;15(3):e0230260
pubmed: 32196538
Sci Rep. 2017 Aug 29;7(1):9853
pubmed: 28851930
IEEE Trans Image Process. 1995;4(3):370-8
pubmed: 18289986
Ophthalmology. 2017 Feb;124(2):235-244
pubmed: 27887743
Am J Ophthalmol. 2018 Nov;195:233-242
pubmed: 30098346
Can J Ophthalmol. 2020 Aug;55(4):317-322
pubmed: 32439196
Transl Vis Sci Technol. 2020 Aug 31;9(9):48
pubmed: 32934898
Prog Retin Eye Res. 2018 May;64:1-55
pubmed: 29229445
Ann N Y Acad Sci. 1966 Jan 31;128(3):1035-53
pubmed: 5220765
PLoS One. 2019 Feb 22;14(2):e0212364
pubmed: 30794594
Retina. 2020 Dec;40(12):2263-2269
pubmed: 32032255
Quant Imaging Med Surg. 2020 Oct;10(10):1994-2005
pubmed: 33014731
Int J Ophthalmol. 2017 Oct 18;10(10):1545-1551
pubmed: 29062774
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Transl Vis Sci Technol. 2018 Dec 21;7(6):31
pubmed: 30619651
Retina. 2021 Feb 11;:
pubmed: 33587426
Sci Rep. 2020 Sep 21;10(1):15368
pubmed: 32958813