FOXO3a acetylation regulates PINK1, mitophagy, inflammasome activation in murine palmitate-conditioned and diabetic macrophages.
Acetylation
Adenosine Triphosphate
/ metabolism
Animals
Caspases
/ metabolism
DNA, Mitochondrial
Diabetes Mellitus, Experimental
Forkhead Box Protein O3
/ metabolism
Inflammasomes
/ metabolism
Lipopolysaccharides
/ metabolism
Macrophages
/ metabolism
Mice
Mitophagy
NLR Family, Pyrin Domain-Containing 3 Protein
/ metabolism
Palmitates
/ pharmacology
Protein Kinases
/ metabolism
RNA, Messenger
/ metabolism
Reactive Oxygen Species
/ metabolism
ASC oligomerization
NLRP3 inflammasome
PINK1-Parkin mitophagy
diabetic mice
palmitate
Journal
Journal of leukocyte biology
ISSN: 1938-3673
Titre abrégé: J Leukoc Biol
Pays: England
ID NLM: 8405628
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
pubmed:
22
7
2021
medline:
11
5
2022
entrez:
21
7
2021
Statut:
ppublish
Résumé
Nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 inflammasome and mitophagy play an important role in cytokine release and diabetes progression; however, the role of saturated fatty acid that is induced under such conditions remains little explored. Therefore, the present study evaluates mechanisms regulating mitophagy and inflammasome activation in primary murine diabetic and palmitate-conditioned wild-type (WT) peritoneal macrophages. Peritoneal macrophage, from the diabetic mice and WT mice, challenged with LPS/ATP and palmitate/LPS/ATP, respectively, showed dysfunctional mitochondria as assessed by their membrane potential, mitochondrial reactive oxygen species (mtROS) production, and mitochondrial DNA (mtDNA) release. A defective mitophagy was observed in the diabetic and palmitate-conditioned macrophages stimulated with LPS/ATP as assessed by translocation of PTEN-induced kinase 1 (PINK1)/Parkin or p62 in the mitochondrial fraction. Consequently, increased apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, caspase-1 activation, and IL1β secretion were observed in LPS/ATP stimulated diabetic and palmitate-conditioned macrophages. LPS/ATP induced Forkhead box O3a (FOXO3a) binding to PINK1 promoter and increased PINK1 mRNA expression in WT macrophages. However, PINK1 mRNA and protein expression were significantly decreased in diabetic and palmitate-conditioned macrophages in response to LPS/ATP. Palmitate-induced acetyl CoA promoted FOXO3a acetylation, which prevented LPS/ATP-induced FOXO3a binding to the PINK1 promoter. C646 (P300 inhibitor) and SRT1720 (SIRT1 activator) prevented FOXO3a acetylation and restored FOXO3a binding to the PINK1 promoter, PINK1 mRNA expression, and mitophagy in palmitate-conditioned macrophages treated with LPS/ATP. Also, a significant decrease in the LPS/ATP-induced mtROS production, mtDNA release, ASC oligomerization, caspase-1 activation, and IL-1β release was observed in the palmitate-conditioned macrophages. Similarly, modulation of FOXO3a acetylation also prevented LPS/ATP-induced mtDNA release and inflammasome activation in diabetic macrophages. Therefore, FOXO3a acetylation regulates PINK1-dependent mitophagy and inflammasome activation in the palmitate-conditioned and diabetic macrophages.
Identifiants
pubmed: 34288093
doi: 10.1002/JLB.3A0620-348RR
doi:
Substances chimiques
DNA, Mitochondrial
0
Forkhead Box Protein O3
0
FoxO3 protein, mouse
0
Inflammasomes
0
Lipopolysaccharides
0
NLR Family, Pyrin Domain-Containing 3 Protein
0
Palmitates
0
RNA, Messenger
0
Reactive Oxygen Species
0
Adenosine Triphosphate
8L70Q75FXE
Protein Kinases
EC 2.7.-
PTEN-induced putative kinase
EC 2.7.11.1
Caspases
EC 3.4.22.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
611-627Informations de copyright
©2021 Society for Leukocyte Biology.
Références
Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821-832.
Bryant C, Fitzgerald KA. Molecular mechanisms involved in inflammasome activation. Trends Cell Biol. 2009;19:455-464.
Zhong Z, Liang S, Sanchez-Lopez E, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018;560:198-203.
Sorbara MT, Girardin SE. Mitochondrial ROS fuel the inflammasome. Cell Res. 2011;21:558-560.
Nakahira K, Haspel JA, Rathinam VAK, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12:222-230.
Zhong Z, Umemura A, Sanchez-Lopez E, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell. 2016;164:896-910.
Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12:537-577.
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359-407.
Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14:454-460.
Lee IH, Finkel T. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem. 2009;284:6322-6328.
Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008;105:3374-3379.
Boden G. Interaction between free fatty acids and glucose metabolism. Curr Opin Clin Nutr Metab Care. 2002;5:545-549.
Karasawa T, Kawashima A, Usui-Kawanishi F, et al. Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler Thromb Vasc Biol. 2018;38:744-756.
Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12:408-415.
Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007;6:472-483.
Liu Y, Zhang W, Wu X, et al. Foxo3a-dependent Bim transcription protects mice from a high fat diet via inhibition of activation of the NLRP3 inflammasome by facilitating autophagy flux in Kupffer cells. Oncotarget. 2017;8:34258-34267.
Sun XJ, Kim SP, Zhang D, et al. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle. J Biol Chem. 2017;292:12339-12350.
Mao K, Chen S, Chen M, et al. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res. 2013;23:201-212.
Moon JS, Nakahira K, Chung KP, et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat Med. 2016;22:1002-1012.
Singh A, Singh V, Tiwari RL, et al. The IRAK-ERK-p67phox-Nox-2 axis mediates TLR4, 2-induced ROS production for IL-1β transcription and processing in monocytes. Cell Mol Immunol. 2016;13:747-763.
Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat Protoc. 2007;2:287-295.
Kumar A, Gupta P, Rana M, et al. Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation. J Lipid Res. 2020;61:351-364.
Rana M, Kumar A, Tiwari RL, et al. IRAK regulates macrophage foam cell formation by modulating genes involved in cholesterol uptake and efflux. BioEssays. 2016;38:591-604.
Rana M, Maurya P, Reddy SS, et al. A standardized chemically modified Curcuma longa extract modulates IRAK-MAPK signaling in inflammation and potentiates cytotoxicity. Front Pharmacol. 2016;7:223.
Zhu Y, Chen G, Chen L, et al. Monitoring mitophagy in mammalian cells. In: Murphy AN, Chan DC, eds. Methods in Enzymology. Amsterdam: Academic Press, Inc.; 2014:39-55. C.
Gao LP, Xiao K, Wu YZ, et al. Enhanced mitophagy activity in prion-infected cultured cells and prion-infected experimental mice via a Pink1/Parkin-dependent mitophagy pathway. ACS Chem Neurosci. 2020;11:814-829.
Fonseca TB, Sánchez-Guerrero Á, Milosevic I, et al. Mitochondrial fission requires DRP1 but not dynamins. Nature. 2019;570:E34-E42.
Lin XH, Qiu BQ, Ma M, et al. Suppressing DRP1-mediated mitochondrial fission and mitophagy increases mitochondrial apoptosis of hepatocellular carcinoma cells in the setting of hypoxia. Oncogenesis. 2020;9:67.
Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524:309-314.
Mei Y, Zhang Y, Yamamoto K, et al. FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc Natl Acad Sci U S A. 2009;106:5153-5158.
Senf SM, Sandesara PB, Reed SA, et al. P300 acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol-Cell Physiol. 2011;300:C1490-C1501.
Mariño G, Pietrocola F, Eisenberg T, et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell. 2014;53:710-725.
Hariharan N, Maejima Y, Nakae J, et al. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res. 2010;107:1470-1482.
Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356:1517-1526.
Lee HM, Kim JJ, Kim HJ, et al. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013;62:194-204.
Mirza RE, Fang MM, Weinheimer-Haus EM, et al. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes. 2014;63:1103-1114.
Nguyen TN, Padman BS, Lazarou M. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol. 2016;26:733-744.
Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183:795-803.
Latres E, Amini AR, Amini AA, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem. 2005;280:2737-2744.
Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14:395-403.
Van Der Heide LP, Hoekman MFM, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 2004;380:297-309.
Cang X, Wang X, Liu P, et al. PINK1 alleviates palmitate induced insulin resistance in HepG2 cells by suppressing ROS mediated MAPK pathways. Biochem Biophys Res Commun. 2016;478:431-438.
Song YM, Lee WK, Lee YH, et al. Metformin restores parkin-mediated mitophagy, suppressed by cytosolic p53. Int J Mol Sci. 2016;17:E122.
Bae JH, Jo SI, Kim SJ, et al. Circulating cell-free mtDNA contributes to AIM2 inflammasome-mediated chronic inflammation in patients with type 2 diabetes. Cells. 2019;8:328.
Gilkerson R. Commentary: mitochondrial DNA damage and loss in diabetes. Diabetes Metabol Res Rev. 2016;32:672-674.
Cao J, Peng J, An H, et al. Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. Nat Commun. 2017;8:131.
Feng Y, Wang Y, Wang P, et al. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell Physiol Biochem. 2018;49:190-205.
Shirakabe A, Zhai P, Ikeda Y, et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation. 2016;133:1249-1263.
Han H, Tan J, Wang R, et al. PINK 1 phosphorylates Drp1 S616 to regulate mitophagy-independent mitochondrial dynamics. EMBO Rep. 2020;21:e48686.
Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221-226.
Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167:457-470.e13.
Zawalich WS, Zawalich KC. Interleukin 1 is a potent stimulator of islet insulin secretion and phosphoinositide hydrolysis. Am J Physiol-Endocrinol Metab. 1989;256:E19-E24.
Donath MY, Böni-Schnetzler M, Ellingsgaard H, et al. Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol Metabol. 2010;21:261-267.
Bendtzen K, Mandrup-Poulsen T, Nerup J, et al. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science. 1986;232:1545-1547.
Mandrup-Poulsen T, Bendtzen K, Nerup J, et al. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans. Diabetologia. 1986;29:63-67.
Böni-Schnetzler M, Boller S, Debray S, et al. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology. 2009;150:5218-5229.
Benner C, van der Meulen T, Cacéres E, et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics. 2014;15:620.
Goiran T, Duplan E, Chami M, et al. β-Amyloid precursor protein intracellular domain controls mitochondrial function by modulating phosphatase and tensin homolog-induced kinase 1 transcription in cells and in Alzheimer mice models. Biol Psychiatr. 2018;83:416-427.
Melo HM, Seixas da Silva GdaS, Sant'Ana MR, et al. Palmitate is increased in the cerebrospinal fluid of humans with obesity and induces memory impairment in mice via pro-inflammatory TNF-α. Cell Rep. 2020;30:2180-2194.e8.