Important constraints on soil organic carbon formation efficiency in subtropical and tropical grasslands.

carbon sequestration climate fractionation mineral-associated organic matter particulate organic matter soil carbon soil fertility soil management practices soil properties

Journal

Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746

Informations de publication

Date de publication:
10 2021
Historique:
revised: 07 07 2021
received: 03 05 2021
accepted: 08 07 2021
pubmed: 22 7 2021
medline: 21 10 2021
entrez: 21 7 2021
Statut: ppublish

Résumé

More than 10% of Australia's 49 M ha of grassland is considered degraded, prompting widespread interest in the management of these ecosystems to increase soil carbon (C) sequestration-with an emphasis on long-lived C storage. We know that management practices that increase plant biomass also increase C inputs to the soil, but we lack a quantitative understanding of the fate of soil C inputs into different soil organic carbon (SOC) fractions that have fundamentally different formation pathways and persistence in the soil. Our understanding of the factors that constrain SOC formation in these fractions is also limited, particularly within tropical climates. We used isotopically labelled residue (

Identifiants

pubmed: 34288295
doi: 10.1111/gcb.15807
doi:

Substances chimiques

Soil 0
Carbon 7440-44-0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5383-5391

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Abramoff, R. Z., Georgiou, K., Guenet, B., Torn, M. S., Huang, Y., Zhang, H., Feng, W., Jagadamma, S., Kaiser, K., Kothawala, D., Mayes, M. A., & Ciais, P. (2021). How much carbon can be added to soil by sorption? Biogeochemistry, 152(2-3), 127-142. https://doi.org/10.1007/s10533-021-00759-x
Amelung, W., & Zech, W. (1999). Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons. Geoderma, 92(1-2), 73-85. https://doi.org/10.1016/S0016-7061(99)00023-3
Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E., & Harris, T. (2004). Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources, 29(1), 261-299. https://doi.org/10.1146/annurev.energy.29.062403.102142
Austin, A. T., Méndez, M. S., & Ballaré, C. L. (2016). Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 113(16), 4392-4397. https://doi.org/10.1073/pnas.1516157113
Baldock, J. A., & Skjemstad, J. O. (2000). Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry, 31(7-8), 697-710. https://doi.org/10.1016/S0146-6380(00)00049-8
Brandt, L. A., King, J. Y., Hobbie, S. E., Milchunas, D. G., & Sinsabaugh, R. L. (2010). The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems, 13(5), 765-781. https://doi.org/10.1007/s10021-010-9353-2
Conant, R. T., Cerri, C. E. P., Osborne, B. B., & Paustian, K. (2017). Grassland management impacts on soil carbon stocks: A new synthesis. Ecological Applications, 27(2), 662-668. https://doi.org/10.1002/eap.1473
Conant, R. T., & Paustian, K. (2002). Potential soil carbon sequestration in overgrazed grassland ecosystems. Global Biogeochemical Cycles, 16(4), 90-1-90-9. https://doi.org/10.1029/2001GB001661
Cotrufo, M., Del Galdo, I., & Piermatteo, D. (2010). Litter decomposition: Concepts, methods and future perspectives. In Soil carbon dynamics: An integrated methodology (January, pp. 76-90). https://doi.org/10.1017/CBO9780511711794.006
Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., & Parton, W. J. (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8(10), 776-779. https://doi.org/10.1038/ngeo2520
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology 19(4), 988-995. https://doi.org/10.1111/gcb.12113
Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M., Casanova-Katny, A., Muñoz, C., Boudin, M., Zagal Venegas, E., & Boeckx, P. (2015). Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience, 8(10), 780-783. https://doi.org/10.1038/ngeo2516
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., & Whitmore, A. P. (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18(6), 1781-1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x
Gregorich, E. G., Janzen, H., Ellert, B. H., Helgason, B. L., Qian, B., Zebarth, B. J., Angers, D. A., Beyaert, R. P., Drury, C. F., Duguid, S. D., May, W. E., McConkey, B. G., & Dyck, M. F. (2017). Litter decay controlled by temperature, not soil properties, affecting future soil carbon. Global Change Biology, 23(4), 1725-1734. https://doi.org/10.1111/gcb.13502
Isbell, R. F. (1996). The Australian soil classification. Geoderma, 75(1-2), 152-153. https://doi.org/10.1016/S0016-7061(96)00096-1
Jilling, A., Keiluweit, M., Contosta, A. R., Frey, S., Schimel, J., Schnecker, J., Smith, R. G., Tiemann, L., & Grandy, A. S. (2018). Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry, 139(2), 103-122. https://doi.org/10.1007/s10533-018-0459-5
Kell, D. B. (2012). Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: Why and how. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1595), 1589-1597. https://doi.org/10.1098/rstb.2011.0244
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., & Leinweber, P. (2008). Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171(1), 61-82. https://doi.org/10.1002/jpln.200700048
Krull, E. S., Baldock, J. A., & Skjemstad, J. O. (2003). Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology, 30(2), 207-https://doi.org/10.1071/FP02085
Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26(1), 261-273. https://doi.org/10.1111/gcb.14859
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60-68. https://doi.org/10.1038/nature16069
Lipper, L., Dutilly-Diane, C., & McCarthy, N. (2010). Supplying carbon sequestration from West African rangelands: Opportunities and barriers. Rangeland Ecology & Management, 63(1), 155-166. https://doi.org/10.2111/REM-D-09-00009.1
Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions - A review. European Journal of Soil Science, 57(4), 426-445. https://doi.org/10.1111/j.1365-2389.2006.00809.x
Mitchell, E., Scheer, C., Rowlings, D., Conant, R. T., Cotrufo, M. F., & Grace, P. (2018). Amount and incorporation of plant residue inputs modify residue stabilisation dynamics in soil organic matter fractions. Agriculture, Ecosystems & Environment, 256, 82-91. https://doi.org/10.1016/j.agee.2017.12.006
Mitchell, E., Scheer, C., Rowlings, D. W., Conant, R. T., Cotrufo, M. F., van Delden, L., & Grace, P. R. (2016). The influence of above-ground residue input and incorporation on GHG fluxes and stable SOM formation in a sandy soil. Soil Biology and Biochemistry, 101, 104-113. https://doi.org/10.1016/j.soilbio.2016.07.008
Mitchell, E., Scheer, C., Rowlings, D., Cotrufo, M. F., Conant, R. T., Friedl, J., & Grace, P. (2020). Trade-off between ‘new’ SOC stabilisation from above-ground inputs and priming of native C as determined by soil type and residue placement. Biogeochemistry, 149(2), 221-236. https://doi.org/10.1007/s10533-020-00675-6
Poirier, V., Roumet, C., & Munson, A. D. (2018). The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biology and Biochemistry, 120, 246-259. https://doi.org/10.1016/j.soilbio.2018.02.016
Rasse, D. P., Rumpel, C., & Dignac, M. F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 269(1-2), 341-356. https://doi.org/10.1007/s11104-004-0907-y
Ryals, R., Kaiser, M., Torn, M. S., Berhe, A. A., & Silver, W. L. (2014). Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biology and Biochemistry, 68, 52-61. https://doi.org/10.1016/j.soilbio.2013.09.011
Sanjari, G., Ghadiri, H., Ciesiolka, C. A. A., & Yu, B. (2008). Comparing the effects of continuous and time-controlled grazing systems on soil characteristics in Southeast Queensland. Australian Journal of Soil Research, 46(4), 348. https://doi.org/10.1071/SR07220
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56. https://doi.org/10.1038/nature10386
Schuman, G. E., Reeder, J. D., Manley, J. T., Hart, R. H., & Manley, W. A. (1999). Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecological Applications, 9(1), 65-71. https://doi.org/10.1890/1051-0761(1999)009%5B0065:IOGMOT%5D2.0.CO;2
Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155-176. https://doi.org/10.1023/A:1016125726789
Six, J., & Paustian, K. (2014). Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 68, A4-A9. https://doi.org/10.1016/j.soilbio.2013.06.014
Sokol, N., Kuebbing, S., Karlsen-Ayala, E., & Bradford, M. (2019). Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 221(1), 233-246. https://doi.org/10.1111/nph.15361
Southorn, N. J. (2002). The soil structure component of soil quality under alternate grazing management strategies. Advances in Geoecology, 35, 163-170
Stemmer, M., Von Lutzow, M., Kanderler, E., Pichlmayer, F., & Gerzabek, M. H. (1999). The effect of maize straw placement on mineralisation of C and N in soil particle size fractions. European Journal of Soil Science, 50, 73-85.
Teague, R., Provenza, F., Norton, B., Steffens, T., Barnes, M., Kothmann, M., & Roath, R. (2008). Benefits of multi-paddock grazing management on rangelands: Limitations of experimental grazing research and knowledge gaps. In Grasslands: Ecology, management and restoration (pp. 41-80). Nova Science Publishers.
Wei, Y., Zhang, Y., Wilson, G. W. T., Guo, Y., Bi, Y., Xiong, X., & Liu, N. (2021). Transformation of litter carbon to stable soil organic matter is facilitated by ungulate trampling. Geoderma, 385, 114828. https://doi.org/10.1016/j.geoderma.2020.114828
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 149-162. https://doi.org/10.1016/j.geoderma.2018.07.026
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., & Fuhrer, J. (2007). Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science, 58(3), 658-667. https://doi.org/10.1111/j.1365-2389.2006.00855.x

Auteurs

Elaine Mitchell (E)

Queensland University of Technology, Brisbane, Queensland, Australia.

Clemens Scheer (C)

Queensland University of Technology, Brisbane, Queensland, Australia.

David Rowlings (D)

Queensland University of Technology, Brisbane, Queensland, Australia.

Francesca Cotrufo (F)

Colorado State University, Fort Collins, Colorado, USA.

Richard T Conant (RT)

Colorado State University, Fort Collins, Colorado, USA.

Peter Grace (P)

Queensland University of Technology, Brisbane, Queensland, Australia.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH