Flow cytometric myeloma measurable residual disease testing in the era of targeted therapies.


Journal

International journal of laboratory hematology
ISSN: 1751-553X
Titre abrégé: Int J Lab Hematol
Pays: England
ID NLM: 101300213

Informations de publication

Date de publication:
Jul 2021
Historique:
revised: 22 04 2021
received: 27 02 2021
accepted: 27 04 2021
entrez: 21 7 2021
pubmed: 22 7 2021
medline: 10 8 2021
Statut: ppublish

Résumé

Therapies in myeloma are rapidly advancing with a host of new targeted therapies coming to market. While these drugs offer significant survival benefits and better side-effect profiles compared with conventional chemotherapeutics, they raise significant difficulties in monitoring post-therapy disease status by flow cytometry due to assay interference and/or selection of phenotypically different sub-clones. The principal culprit, anti-CD38 monoclonal antibodies, limits the ability to detect plasma cells based on classical CD38/CD45 gating. Other markers, such as CD138, are known to be suboptimal by flow cytometry. Various techniques have been proposed to overcome this problem. The most promising of these techniques has been the marker VS38c, a monoclonal antibody targeting an endoplasmic reticulum protein which has shown high sensitivity for plasma cells. Alternative techniques for gating plasma cells, while variably effective in the near term are already the subject of several targeted therapies rendering their usefulness limited in the longer term. Likewise, future targets of these therapies may render present aberrancy markers ineffective in MRD testing. These therapies pose challenges that must be overcome with new markers and novel panels in order for flow cytometric MRD testing to remain relevant.

Identifiants

pubmed: 34288444
doi: 10.1111/ijlh.13587
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

71-77

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Casan JML, Wong J, Northcott MJ, Opat S. Anti-CD20 monoclonal antibodies: reviewing a revolution. Hum Vaccin Immunother. 2018;14:2820-2841. https://doi.org/10.1080/21645515.2018.1508624
Lim SH, Beers SA, French RR, Johnson PW, Glennie MJ, Cragg MS. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica. 2010;95:135-143. https://doi.org/10.3324/haematol.2008.001628
Campana D, Coustan-Smith E. Minimal residual disease studies by flow cytometry in acute leukemia. Acta Haematol. 2004;112:8-15. https://doi.org/10.1159/000077554
Coustan-Smith E, Sancho J, Hancock ML, et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood. 2000;96:2691-2696.
Farahat N, Morilla A, Owusu-Ankomah K, et al. Detection of minimal residual disease in B-lineage acute lymphoblastic leukaemia by quantitative flow cytometry. Br J Haematol. 1998;101:158-164. https://doi.org/10.1046/j.1365-2141.1998.00675.x
Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31:1482-1490. https://doi.org/10.1038/leu.2017.113
San Miguel JF, Vidriales MB, Lopez-Berges C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. 2001;98:1746-1751. https://doi.org/10.1182/blood.v98.6.1746
Rawstron AC, Bottcher S, Letestu R, et al. Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia. 2013;27:142-149. https://doi.org/10.1038/leu.2012.216
Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood. 2008;112:4017-4023. https://doi.org/10.1182/blood-2008-05-159624
Rawstron AC, Child JA, de Tute RM, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol. 2013;31:2540-2547. https://doi.org/10.1200/JCO.2012.46.2119
Medina A, Puig N, Flores-Montero J, et al. Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma. Blood Cancer J. 2020;10:108. https://doi.org/10.1038/s41408-020-00377-0
Kriegsmann K, Hundemer M, Hofmeister-Mielke N, et al. Comparison of NGS and MFC methods: key metrics in multiple myeloma MRD assessment. Cancers (Basel). 2020;12:2322. https://doi.org/10.3390/cancers12082322
Oliva S, Genuardi E, Belotti A, et al. Multiparameter flow cytometry (MFC) and next generation sequencing (NGS) for minimal residual disease (MRD) evaluation: results of the FORTE trial in newly diagnosed multiple myeloma (MM). J Clin Oncol. 2020;38:8533-8533. https://doi.org/10.1200/JCO.2020.38.15_suppl.8533
Romano A, Palumbo GA, Parrinello NL, Conticello C, Martello M, Terragna C. Minimal residual disease assessment within the bone marrow of multiple myeloma: a review of caveats, clinical significance and future perspectives. Front Oncol. 2019;9:699. https://doi.org/10.3389/fonc.2019.00699
Kumar SK, Callander NS, Adekola K, et al. Multiple myeloma, version 3.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18:1685-1717. https://doi.org/10.6004/jnccn.2020.0057
Landgren O, Rajkumar SV. New Developments in Diagnosis, Prognosis, and Assessment of Response in Multiple Myeloma. Clin Cancer Res. 2016;22:5428-5433. https://doi.org/10.1158/1078-0432.CCR-16-0866
Cherian S, Miller V, McCullouch V, Dougherty K, Fromm JR, Wood BL. A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy. Cytometry B Clin Cytom. 2018;94:112-120. https://doi.org/10.1002/cyto.b.21482
Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:754-766. https://doi.org/10.1056/NEJMoa1606038
Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:1319-1331. https://doi.org/10.1056/NEJMoa1607751
Al Hamed R, Bazarbachi AH, Malard F, Harousseau JL, Mohty M. Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 2019;9:44. https://doi.org/10.1038/s41408-019-0205-9
Nooka AK, Kaufman JL, Hofmeister CC, et al. Daratumumab in multiple myeloma. Cancer. 2019;125:2364-2382. https://doi.org/10.1002/cncr.32065
FDA Approves Isatuximab-irfc for Multiple Myeloma. US Government; 2020. https://www.fda.gov/drugs/development-approval-process-drugs/fda-approves-isatuximab-irfc-multiple-myeloma. Accessed February 24, 2021.
Isatuximab DS. First approval. Drugs. 2020;80:905-912. https://doi.org/10.1007/s40265-020-01311-1
Arroz M, Came N, Lin P, et al. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin Cytom. 2016;90:31-39. https://doi.org/10.1002/cyto.b.21228
Royston DJ, Gao Q, Nguyen N, Maslak P, Dogan A, Roshal M. Single-tube 10-fluorochrome analysis for efficient flow cytometric evaluation of minimal residual disease in plasma cell myeloma. Am J Clin Pathol. 2016;146:41-49. https://doi.org/10.1093/ajcp/aqw052
Stetler-Stevenson M, Paiva B, Stoolman L, et al. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytometry B Clin Cytom. 2016;90:26-30. https://doi.org/10.1002/cyto.b.21249
Wang HW, Lin P. Flow cytometric immunophenotypic analysis in the diagnosis and prognostication of plasma cell neoplasms. Cytometry B Clin Cytom. 2019;96:338-350. https://doi.org/10.1002/cyto.b.21844
Flores-Montero J, Sanoja-Flores L, Paiva B, et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31:2094-2103. https://doi.org/10.1038/leu.2017.29
Flores-Montero J, de Tute R, Paiva B, et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90:61-72. https://doi.org/10.1002/cyto.b.21265
Robillard N, Wuilleme S, Lode L, Magrangeas F, Minvielle S, Avet-Loiseau H. CD33 is expressed on plasma cells of a significant number of myeloma patients, and may represent a therapeutic target. Leukemia. 2005;19:2021-2022. https://doi.org/10.1038/sj.leu.2403948
Douds JJ, Long DJ, Kim AS, Li S. Diagnostic and prognostic significance of CD200 expression and its stability in plasma cell myeloma. J Clin Pathol. 2014;67:792-796. https://doi.org/10.1136/jclinpath-2014-202421
Bayer-Garner IB, Sanderson RD, Dhodapkar MV, Owens RB, Wilson CS. Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. Mod Pathol. 2001;14:1052-1058. https://doi.org/10.1038/modpathol.3880435
Grigoriadis G, Whitehead S. CD138 shedding in plasma cell myeloma. Br J Haematol. 2010;150:249. https://doi.org/10.1111/j.1365-2141.2010.08203.x
Jourdan M, Ferlin M, Legouffe E, et al. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br J Haematol. 1998;100:637-646. https://doi.org/10.1046/j.1365-2141.1998.00623.x
Halliley JL, Tipton CM, Liesveld J, et al. Long-lived plasma cells are contained within the CD19(−)CD38(hi)CD138(+) subset in human bone marrow. Immunity. 2015;43:132-145. https://doi.org/10.1016/j.immuni.2015.06.016
Mei HE, Wirries I, Frolich D, et al. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood. 2015;125:1739-1748. https://doi.org/10.1182/blood-2014-02-555169
Rawstron AC, Orfao A, Beksac M, et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica. 2008;93:431-438. https://doi.org/10.3324/haematol.11080
Courville EL, Yohe S, Shivers P, Linden MA. VS38 identifies myeloma cells with dim CD38 expression and plasma cells following daratumumab therapy, which interferes with CD38 detection for 4 to 6 months. Am J Clin Pathol. 2020;153:221-228. https://doi.org/10.1093/ajcp/aqz153
Oberle A, Brandt A, Alawi M, et al. Long-term CD38 saturation by daratumumab interferes with diagnostic myeloma cell detection. Haematologica. 2017;102:e368-e370. https://doi.org/10.3324/haematol.2017.169235
Minarik J, Novak M, Flodr P, et al. CD38-negative relapse in multiple myeloma after daratumumab-based chemotherapy. Eur J Haematol. 2017;99:186-189. https://doi.org/10.1111/ejh.12902
Pojero F, Flores-Montero J, Sanoja L, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100. https://doi.org/10.1002/cyto.b.21269
Dogan A, Siegel D, Tran N, et al. B-cell maturation antigen expression across hematologic cancers: a systematic literature review. Blood Cancer J. 2020;10:73. https://doi.org/10.1038/s41408-020-0337-y
Atanackovic D, Panse J, Hildebrandt Y, et al. Surface molecule CD229 as a novel target for the diagnosis and treatment of multiple myeloma. Haematologica. 2011;96:1512-1520. https://doi.org/10.3324/haematol.2010.036814
Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373:621-631. https://doi.org/10.1056/NEJMoa1505654
Rodriguez-Lobato LG, Ganzetti M, Fernandez de Larrea C, Hudecek M, Einsele H, Danhof S. CAR T-cells in multiple myeloma: state of the art and future directions. Front. Oncol. 2020;10:1243. https://doi.org/10.3389/fonc.2020.01243
Mizuta S, Kawata T, Kawabata H, et al. VS38 as a promising CD38 substitute antibody for flow cytometric detection of plasma cells in the daratumumab era. Int J Hematol. 2019;110:322-330. https://doi.org/10.1007/s12185-019-02685-z
Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419. https://doi.org/10.1126/science.1260419
FDA Granted Accelerated Approval to Belantamab Mafodotin-blmf for Multiple Myeloma. US Government; 2020. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-granted-accelerated-approval-belantamab-mafodotin-blmf-multiple-myeloma. Accessed April 18, 2021.
Nerreter T, Letschert S, Gotz R, et al. Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. Nat Commun. 2019;10:3137. https://doi.org/10.1038/s41467-019-10948-w
Mikkilineni L, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood. 2017;130:2594-2602. https://doi.org/10.1182/blood-2017-06-793869
Ailawadhi S, Kelly KR, Vescio RA, et al. A phase I study to assess the safety and pharmacokinetics of single-agent lorvotuzumab mertansine (IMGN901) in patients with relapsed and/or refractory CD-56-positive multiple myeloma. Clin Lymphoma Myeloma Leuk. 2019;19:29-34. https://doi.org/10.1016/j.clml.2018.08.018
Kapoor P, Greipp PT, Morice WG, Rajkumar SV, Witzig TE, Greipp PR. Anti-CD20 monoclonal antibody therapy in multiple myeloma. Br J Haematol. 2008;141:135-148. https://doi.org/10.1111/j.1365-2141.2008.07024.x
Moreau P, Voillat L, Benboukher L, et al. Rituximab in CD20 positive multiple myeloma. Leukemia. 2007;21:835-836. https://doi.org/10.1038/sj.leu.2404558
ClinicalTrials.gov. A phase I study of Lintuzumab-Ac225 in patients with refractory multiple myeloma. Updated May 20 2020. https://clinicaltrials.gov/ct2/show/NCT02998047. Accessed April 19, 2021.
Myburgh R, Kiefer JD, Russkamp NF, et al. Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia. 2020;34:2688-2703. https://doi.org/10.1038/s41375-020-0818-9
Ansell SM, Flinn I, Taylor MH, et al. Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, for hematologic malignancies. Blood Adv. 2020;4:1917-1926. https://doi.org/10.1182/bloodadvances.2019001079
Vences-Catalan F, Kuo CC, Rajapaksa R, et al. CD81 is a novel immunotherapeutic target for B cell lymphoma. J Exp Med. 2019;216:1497-1508. https://doi.org/10.1084/jem.20190186

Auteurs

David P Ng (DP)

University of Utah, Salt Lake City, UT, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH