The Central Role of Nitrogen Atoms in a Zeolitic Imidazolate Framework-Derived Catalyst for Cathodic Hydrogen Evolution.
N heterocycles
binding sites
electrocatalysis
hydrogen evolution reaction
zeolitic imidazolate frameworks
Journal
ChemSusChem
ISSN: 1864-564X
Titre abrégé: ChemSusChem
Pays: Germany
ID NLM: 101319536
Informations de publication
Date de publication:
20 Sep 2021
20 Sep 2021
Historique:
revised:
20
07
2021
received:
26
06
2021
pubmed:
22
7
2021
medline:
22
7
2021
entrez:
21
7
2021
Statut:
ppublish
Résumé
Platinum usually offers the most effective active center for hydrogen evolution reaction (HER), because of the optimal trade-off between the adsorption and desorption of hydrogeN atoms (H*) on Pt atoms. Herein, we report an unusual result regarding the active center of a HER catalyst, which was synthesized by electrodepositing traces of Pt nanoparticles (NPs) into a porous nitrogen-rich dodecahedron matrix derived from zeolitic imidazolate framework ZIF-8. With an ultra-low Pt loading of 2.76 μg cm
Identifiants
pubmed: 34288529
doi: 10.1002/cssc.202101337
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3926-3934Subventions
Organisme : National Natural Science Foundation of China
ID : 21576063
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable Energy 2016, 85, 1371-1390;
G. Lin, Y. Wang, J. Hong, K. Suenaga, L. Liu, L.-Y. Chang, C.-W. Pao, T. Zhang, W. Zhao, F. Huang, M. Yang, Y.-Y. Sun, J. Wang, ChemSusChem 2020, 13, 2739-2744;
W. Li, B. Feng, L. Yi, J. Li, W. Hu, ChemSusChem 2021, 14, 730-737.
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998;
R. Samanta, R. Mishra, S. Barman, ChemSusChem 2021, 14, 2112-2125;
M. Aygün, M. Guillen-Soler, J. M. Vila-Fungueiriño, A. Kurtoglu, T. Chamberlain, A. Khlobystov, M. d. C. Gimenez Lopez, ChemSusChem 2021, https://doi.org/10.1002/cssc.202101236;
B. Koo, J. Chu, J. Seo, G. Jung, S. H. Baek, S.-W. Nam, C. Duah, Y. K. Lee, W. Jung, B. Shin, ChemSusChem 2021, 14, 2585-2590;
D. Cao, H. Xu, D. Cheng, Adv. Energy Mater. 2020, 10, 1903038;
D. Cao, J. Wang, H. Zhang, H. Xu, D. Cheng, Chem. Eng. J. 2021, 416, 129128.
P. Lindgren, G. Kastlunger, A. A. Peterson, ACS Catal. 2020, 10, 121-128;
Y. Li, L. A. Zhang, Y. Qin, F. Chu, Y. Kong, Y. Tao, Y. Li, Y. Bu, D. Ding, M. Liu, ACS Catal. 2018, 8, 5714-5720.
J. Li, H.-X. Liu, W. Gou, M. Zhang, Z. Xia, S. Zhang, C.-R. Chang, Y. Ma, Y. Qu, Energy Environ. Sci. 2019, 12, 2298-2304.
S. Fang, X. Zhu, X. Liu, J. Gu, W. Liu, D. Wang, W. Zhang, Y. Lin, J. Lu, S. Wei, Y. Li, T. Yao, Nat. Commun. 2020, 11, 1029;
B. Jiang, H. Yuan, Q. Dang, T. Wang, T. Pang, Y. Cheng, K. Wu, X. Wu, M. Shao, Int. J. Hydrogen Energy 2019, 44, 31121-31128;
J. N. Tiwari, S. Sultan, C. W. Myung, T. Yoon, N. Li, M. Ha, A. M. Harzandi, H. J. Park, D. Y. Kim, S. S. Chandrasekaran, W. G. Lee, V. Vij, H. Kang, T. J. Shin, H. S. Shin, G. Lee, Z. Lee, K. S. Kim, Nat. Energy 2018, 3, 773-782.
J. Ma, A. Habrioux, Y. Luo, G. Ramos-Sanchez, L. Calvillo, G. Granozzi, P. B. Balbuena, N. Alonso-Vante, J. Mater. Chem. A 2015, 3, 11891-11904;
R. Brandiele, C. Durante, M. Zerbetto, N. Vicentini, T. Kosmala, D. Badocco, P. Pastore, G. A. Rizzi, A. A. Isse, A. Gennaro, Electrochim. Acta 2018, 277, 287-300;
T. Holme, Y. Zhou, R. Pasquarelli, R. O′Hayre, Phys. Chem. Chem. Phys. 2010, 12, 9461-9468;
S. G. Peera, A. Arunchander, A. K. Sahu, Carbon 2016, 107, 667-679;
K. Ham, D. Shin, J. Lee, ChemSusChem 2020, 13, 1751-1758.
M. González-Hernández, E. Antolini, J. Perez, Catalysts 2020, 10, 597;
S. Zhang, H. Wang, N. Zhang, F. Kong, H. Liu, G. Yin, J. Power Sources 2012, 197, 44-49.
J. N. Tiwari, A. M. Harzandi, M. Ha, S. Sultan, C. W. Myung, H. J. Park, D. Y. Kim, P. Thangavel, A. N. Singh, P. Sharma, S. S. Chandrasekaran, F. Salehnia, J.-W. Jang, H. S. Shin, Z. Lee, K. S. Kim, Adv. Energy Mater. 2019, 9, 1900931;
A. M. Harzandi, S. Shadman, M. Ha, C. W. Myung, D. Y. Kim, H. J. Park, S. Sultan, W.-S. Noh, W. Lee, P. Thangavel, W. J. Byun, S.-h. Lee, J. N. Tiwari, T. J. Shin, J.-H. Park, Z. Lee, J. S. Lee, K. S. Kim, Appl. Catal. B 2020, 270, 118896;
J. N. Tiwari, N. K. Dang, S. Sultan, P. Thangavel, H. Y. Jeong, K. S. Kim, Nat. Sustain. 2020, 3, 556-563;
M. Ha, D. Y. Kim, M. Umer, V. Gladkikh, C. W. Myung, K. S. Kim, Energy Environ. Sci. 2021, 14, 3455-3468.
J. Wang, Y. Wang, Y. Zhang, A. Uliana, J. Zhu, J. Liu, B. Van der Bruggen, ACS Appl. Mater. Interfaces 2016, 8, 25508-25519.
J. Liu, D. Zhu, T. Ling, A. Vasileff, S.-Z. Qiao, Nano Energy 2017, 40, 264-273;
H.-J. Lee, C. L. Soles, W.-l. Wu, ECS Trans. 2011, 34, 931-936.
Y. Zhu, J. Ciston, B. Zheng, X. Miao, C. Czarnik, Y. Pan, R. Sougrat, Z. Lai, C.-E. Hsiung, K. Yao, I. Pinnau, M. Pan, Y. Han, Nat. Mater. 2017, 16, 532-536.
L.-M. Lacroix, C. Gatel, R. Arenal, C. Garcia, S. Lachaize, T. Blon, B. Warot-Fonrose, E. Snoeck, B. Chaudret, G. Viau, Angew. Chem. Int. Ed. 2012, 51, 4690-4694;
Angew. Chem. 2012, 124, 4768-4772.
C. Young, R. R. Salunkhe, J. Tang, C. C. Hu, M. Shahabuddin, E. Yanmaz, M. S. Hossain, J. H. Kim, Y. Yamauchi, Phys. Chem. Chem. Phys. 2016, 18, 29308-29315.
K. J. Sankaran, M. Ficek, S. Kunuku, K. Panda, C.-J. Yeh, J. Y. Park, M. Sawczak, P. P. Michałowski, K.-C. Leou, R. Bogdanowicz, I. N. Lin, K. Haenen, Nanoscale 2018, 10, 1345-1355;
T. Katoh, G. Imamura, S. Obata, K. Saiki, RSC Adv. 2016, 6, 13392-13398.
X. Sun, M. Li, S. Ren, T. Lei, S. Y. Lee, S. Lee, Q. Wu, J. Power Sources 2020, 454, 227878.
H. Miao, S. Li, Z. Wang, S. Sun, M. Kuang, Z. Liu, J. Yuan, Int. J. Hydrogen Energy 2017, 42, 28298-28308;
L. Wang, C. Wang, H. Wang, X. Jiao, Y. Ouyang, X. Xia, W. Lei, Q. Hao, Electrochim. Acta 2018, 289, 494-502;
P. Cao, Y. Liu, X. Quan, J. Zhao, S. Chen, H. Yu, Catal. Today 2019, 327, 366-373.
M. Wilson, R. Kore, R. C. Fraser, S. K. Beaumont, R. Srivastava, J. P. S. Badyal, Colloids Surf. A 2017, 520, 788-795.
S. Chao, F. Zou, F. Wan, X. Dong, Y. Wang, Y. Wang, Q. Guan, G. Wang, W. Li, Sci. Rep. 2017, 7, 39789.
V. Gargiulo, B. Alfano, R. Di Capua, M. Alfé, M. Vorokhta, T. Polichetti, E. Massera, M. L. Miglietta, C. Schiattarella, G. Di Francia, J. Appl. Phys. 2018, 123, 024503;
K.-N. Chua, C. Chai, P.-C. Lee, S. Ramakrishna, K. W. Leong, H.-Q. Mao, Exp. Dermatol. 2007, 35, 771-781.
S. Jayabal, G. Saranya, D. Geng, L.-Y. Lin, X. Meng, J. Mater. Chem. A 2020, 8, 9420-9446.
E. L. Kolsbjerg, M. N. Groves, B. Hammer, J. Chem. Phys. 2016, 144, 164112.
A. Adenier, M. M. Chehimi, I. Gallardo, J. Pinson, N. Vilà, Langmuir 2004, 20, 8243-8253.
D.-H. He, J.-J. Liu, Y. Wang, F. Li, B. Li, J.-B. He, Electrochim. Acta 2019, 308, 285-294.
D. He, Y. Jiang, H. Lv, M. Pan, S. Mu, Appl. Catal. B 2013, 132-133, 379-388;
G. Shi, T. Tano, D. A. Tryk, A. Iiyama, M. Uchida, K. Kakinuma, ACS Catal. 2021, 11, 5222-5230.
D. Cao, D. Cheng, Chem. Commun. 2019, 55, 8154-8157.
R. Oozeerally, S. D. K. Ramkhelawan, D. L. Burnett, C. H. L. Tempelman, V. Degirmenci, Catalysts 2019, 9, 812;
Y. Hu, H. Kazemian, S. Rohani, Y. Huang, S. Yang, Chem. Commun. 2011, 47, 12694-12696.
Y. Hu, Y. Qu, Y. Zhou, Z. Wang, H. Wang, B. Yang, Z. Yu, Y. Wu, Chem. Eng. J. 2021, 412, 128749.
P. G. Daniele, A. De Robertis, C. De Stefano, S. Sammartano, J. Solution Chem. 1989, 18, 23-36.
K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2006, 103, 10186-10191.
Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Chem. Soc. Rev. 2020, 49, 3484-3524.
X. Ren, D. Wu, R. X. Ge, X. Sun, H. M. Ma, T. Yan, Y. Zhang, B. Du, Q. Wei, L. Chen, Nano Res. 2018, 11, 2024-2033.
X.-F. Yang, J. Li, F. Li, C.-X. Li, M.-F. Zhang, B. Li, J.-B. He, Electrochim. Acta 2020, 348, 136333.
M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys. Condens. Matter 2002, 14, 2717-2744.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 2009, 102, 073005.
D. Vanderbilt, Phys. Rev. B 1990, 41, 7892-7895.