Temporal stability of stimulus representation increases along rodent visual cortical hierarchies.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
21 07 2021
21 07 2021
Historique:
received:
15
11
2019
accepted:
14
06
2021
entrez:
22
7
2021
pubmed:
23
7
2021
medline:
3
8
2021
Statut:
epublish
Résumé
Cortical representations of brief, static stimuli become more invariant to identity-preserving transformations along the ventral stream. Likewise, increased invariance along the visual hierarchy should imply greater temporal persistence of temporally structured dynamic stimuli, possibly complemented by temporal broadening of neuronal receptive fields. However, such stimuli could engage adaptive and predictive processes, whose impact on neural coding dynamics is unknown. By probing the rat analog of the ventral stream with movies, we uncovered a hierarchy of temporal scales, with deeper areas encoding visual information more persistently. Furthermore, the impact of intrinsic dynamics on the stability of stimulus representations grew gradually along the hierarchy. A database of recordings from mouse showed similar trends, additionally revealing dependencies on the behavioral state. Overall, these findings show that visual representations become progressively more stable along rodent visual processing hierarchies, with an important contribution provided by intrinsic processing.
Identifiants
pubmed: 34290247
doi: 10.1038/s41467-021-24456-3
pii: 10.1038/s41467-021-24456-3
pmc: PMC8295255
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4448Subventions
Organisme : NEI NIH HHS
ID : R01 EY007977
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS113241
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Neuroimage. 2004 Nov;23(3):905-13
pubmed: 15528090
J Neurosci. 2015 Oct 28;35(43):14661-80
pubmed: 26511254
Neuron. 2016 Sep 7;91(5):1154-1169
pubmed: 27523426
J Neurophysiol. 2018 Sep 1;120(3):926-941
pubmed: 29742022
J Neurophysiol. 2020 Jan 1;123(1):224-233
pubmed: 31774368
Neural Comput. 2012 Apr;24(4):827-66
pubmed: 22168556
J Neurosci. 2010 Sep 29;30(39):12978-95
pubmed: 20881116
Cereb Cortex. 2016 Jul;26(7):3310-22
pubmed: 27146315
Trends Cogn Sci. 2006 Jan;10(1):14-23
pubmed: 16321563
Curr Biol. 2013 May 20;23(10):890-4
pubmed: 23664971
Neural Comput. 1991 Summer;3(2):194-200
pubmed: 31167302
Nat Neurosci. 2014 Dec;17(12):1661-3
pubmed: 25383900
J Neurophysiol. 2014 Oct 15;112(8):1963-83
pubmed: 24990566
Curr Biol. 2012 Mar 20;22(6):510-4
pubmed: 22342751
J Neurosci. 2019 Feb 27;39(9):1649-1670
pubmed: 30617210
Nature. 2008 Dec 18;456(7224):952-6
pubmed: 18946471
Behav Brain Res. 2015 May 15;285:10-33
pubmed: 25561421
J Neurophysiol. 2007 May;97(5):3155-64
pubmed: 17344377
Eur J Neurosci. 2002 Feb;15(3):475-86
pubmed: 11876775
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8619-24
pubmed: 24812127
Annu Rev Vis Sci. 2015 Nov 1;1:547-567
pubmed: 26858985
Nat Neurosci. 2021 Jul;24(7):975-986
pubmed: 33986549
Z Naturforsch C Biosci. 1981 Sep-Oct;36(9-10):910-2
pubmed: 7303823
Neuroscience. 2018 Oct 1;389:161-174
pubmed: 29729293
Neuron. 2015 Oct 21;88(2):419-31
pubmed: 26439530
Nat Neurosci. 2009 Dec;12(12):1594-600
pubmed: 19915566
Nat Rev Neurosci. 2006 May;7(5):358-66
pubmed: 16760916
Nat Neurosci. 2006 May;9(5):676-81
pubmed: 16604068
PLoS Comput Biol. 2013;9(5):e1003005
pubmed: 23675290
Cereb Cortex. 2010 Sep;20(9):2145-65
pubmed: 20038542
Nat Neurosci. 1999 Jan;2(1):79-87
pubmed: 10195184
Elife. 2014 Nov 14;3:
pubmed: 25396297
J Neurosci. 2011 Feb 2;31(5):1905-18
pubmed: 21289200
J Vis. 2009 Sep 10;9(10):10.1-17
pubmed: 19810791
Annu Rev Vis Sci. 2017 Sep 15;3:251-273
pubmed: 28746815
J Vis. 2005 Jul 20;5(6):579-602
pubmed: 16097870
Trends Cogn Sci. 2007 Aug;11(8):333-41
pubmed: 17631409
Nature. 2017 Aug 3;548(7665):92-96
pubmed: 28723889
Neuron. 2012 Feb 9;73(3):415-34
pubmed: 22325196
Neural Comput. 2002 Apr;14(4):715-70
pubmed: 11936959
Sci Adv. 2020 May 29;6(22):eaba3742
pubmed: 32523998
Curr Biol. 2017 Mar 20;27(6):914-919
pubmed: 28262485
Nat Neurosci. 2016 Apr;19(4):634-641
pubmed: 26974951
PLoS Comput Biol. 2019 May 30;15(5):e1007011
pubmed: 31145723
Nat Neurosci. 2016 Apr;19(4):613-22
pubmed: 26900926
Science. 1999 Aug 27;285(5432):1368-72
pubmed: 10464088
Nature. 2004 Sep 30;431(7008):573-8
pubmed: 15457262
Curr Opin Neurobiol. 2018 Oct;52:131-138
pubmed: 29883940
Nat Neurosci. 1999 Nov;2(11):1019-25
pubmed: 10526343
Neural Netw. 1996 Dec;9(9):1513-1519
pubmed: 12662549
J Neurosci. 2012 Mar 28;32(13):4386-99
pubmed: 22457489
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):E11047-E11056
pubmed: 29208714
J Neurophysiol. 2009 Jul;102(1):360-76
pubmed: 19439676
Nat Commun. 2021 Jul 21;12(1):4448
pubmed: 34290247
Nat Neurosci. 2014 Jun;17(6):851-7
pubmed: 24747577
PLoS Biol. 2006 May;4(5):e120
pubmed: 16605306
J Cogn Neurosci. 2013 May;25(5):777-89
pubmed: 23469883
Cereb Cortex. 1994 Sep-Oct;4(5):523-31
pubmed: 7833653
Sci Adv. 2020 Oct 14;6(42):
pubmed: 33055170
Neuron. 2011 Dec 22;72(6):1040-54
pubmed: 22196338
Nature. 1996 Jun 13;381(6583):607-9
pubmed: 8637596
J Neurophysiol. 2007 Jan;97(1):307-19
pubmed: 17021033
Vision Res. 2008 Jan;48(1):42-54
pubmed: 18078975
Neuron. 2018 Oct 24;100(2):424-435
pubmed: 30359606
J Neurosci. 2008 Jul 23;28(30):7520-36
pubmed: 18650330
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18149-54
pubmed: 20923876
Elife. 2017 Apr 11;6:
pubmed: 28395730
Nat Rev Neurosci. 2013 May;14(5):350-63
pubmed: 23595013
J Neurophysiol. 2004 Jan;91(1):206-12
pubmed: 12904330
Nature. 2021 Apr;592(7852):86-92
pubmed: 33473216
Prog Neurobiol. 1997 Feb;51(2):167-94
pubmed: 9247963
Elife. 2018 Nov 28;7:
pubmed: 30484773
Nat Neurosci. 2013 Aug;16(8):1132-9
pubmed: 23792943
Nature. 2019 Nov;575(7781):195-202
pubmed: 31666704
Curr Opin Neurobiol. 2014 Feb;24(1):28-33
pubmed: 24492075