Brown banded bamboo shark (Chiloscyllium punctatum) shows high genetic diversity and differentiation in Malaysian waters.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
21 07 2021
Historique:
received: 30 03 2020
accepted: 07 07 2021
entrez: 22 7 2021
pubmed: 23 7 2021
medline: 26 11 2021
Statut: epublish

Résumé

The demersal brown banded bamboo shark Chiloscyllium punctatum is a major component of sharks landed in Malaysia. However, little is known about their population structure and the effect of high fishing pressure on these weak swimming sharks. Both mitochondrial DNA control region (1072 bp) and NADH dehydrogenase subunit 2 (1044 bp) were used to elucidate the genetic structure and connectivity of C. punctatum among five major areas within the Sundaland region. Our findings revealed (i) strong genetic structure with little present day mixing between the major areas, (ii) high intra-population genetic diversity with unique haplotypes, (iii) significant correlation between genetic differentiation and geographical distance coupled with detectable presence of fine scale geographical barriers (i.e. the South China Sea), (iv) historical directional gene flow from the east coast of Peninsular Malaysia towards the west coast and Borneo, and (v) no detectable genetic differentiation along the coastline of east Peninsular Malaysia. Genetic patterns inferred from the mitochondrial DNA loci were consistent with the strong coastal shelf association in this species, the presence of contemporary barriers shaped by benthic features, and limited current-driven egg dispersal. Fine scale population structure of C. punctatum highlights the need to improve genetic understanding for fishery management and conservation of other small-sized sharks.

Identifiants

pubmed: 34290296
doi: 10.1038/s41598-021-94257-7
pii: 10.1038/s41598-021-94257-7
pmc: PMC8295251
doi:

Substances chimiques

DNA, Mitochondrial 0
NADH Dehydrogenase EC 1.6.99.3

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

14874

Informations de copyright

© 2021. The Author(s).

Références

Bertorelle, G., Bruford, M. W., Hauffe, H. C., Rizzoli, A. & Vernesi, C. Population Genetics for Animal Conservation (Conservation Biology) (Cambridge University Press, 2009).
Allendorf, F. W., Luikart, G. & Aitken, S. N. Conservation and the Genetics of Populations (Wiley, 2013).
Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).
pubmed: 24448405 pmcid: 3897121 doi: 10.7554/eLife.00590
Sandoval-Castillo, J. & Beheregaray, L. B. Metapopulation structure informs conservation management in a heavily exploited coastal shark (Mustelus henlei). Mar. Ecol. Prog. Ser. 533, 191–203 (2015).
doi: 10.3354/meps11395
Domingues, R. R., Hilsdorf, A. W. S. & Gadig, O. B. F. The importance of considering genetic diversity in shark and ray conservation policies. Conserv. Genet. 19(3), 501–525 (2017).
doi: 10.1007/s10592-017-1038-3
Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A. & Ryman, N. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23(6), 327–337 (2008).
pubmed: 18439706 doi: 10.1016/j.tree.2008.02.008
Keeney, D. B. & Heist, E. J. Worldwide phylogeography of the blacktip shark (Carcharhinus limbatus) inferred from mitochondrial DNA reveals isolation of western Atlantic populations coupled with recent Pacific dispersal. Mol. Ecol. 15, 3669–3679 (2006).
pubmed: 17032265 doi: 10.1111/j.1365-294X.2006.03036.x
Nance, H. A., Klimley, P., Galván-Magaña, F., Martínez-Ortíz, J. & Marko, P. B. Demographic processes underlying subtle patterns of population structure in the scalloped hammerhead shark, Sphyrna lewini. PLoS One 6(7), e21459 (2011).
pubmed: 21789171 pmcid: 3137562 doi: 10.1371/journal.pone.0021459
Schmidt, J. V. et al. Low genetic differentiation across three major ocean populations of the whale shark, Rhincodon typus. PLoS One 4, e4988 (2009).
pubmed: 19352489 pmcid: 2662413 doi: 10.1371/journal.pone.0004988
Pardini, A. T. et al. Sex-biased dispersal of great white sharks. Nature 412, 139–140 (2001).
pubmed: 11449258 doi: 10.1038/35084125
Jorgensen, S. J. et al. Philopatry and migration of Pacific white sharks. Proc. R. Soc. B 277, 679–688 (2009).
pubmed: 19889703 pmcid: 2842735 doi: 10.1098/rspb.2009.1155
Blower, D. C., Pandolfi, J. M., Bruce, B. D., Gomez-Cabrera, M. D. & Ovenden, J. R. Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes. Mar. Ecol. Prog. Ser. 455, 229–244 (2012).
doi: 10.3354/meps09659
Oñate-González, E. C., Rocha-Olivares, A., Saavedra-Sotelo, N. & Sosa-Nishizaki, O. Mitochondrial genetic structure and matrilineal origin of white sharks, Carcharodon carcharias in the Northeastern Pacific: Implications for their conservation. J. Hered. 106(4), 347–354 (2015).
pubmed: 26034138 doi: 10.1093/jhered/esv034
O’Leary, S. J. et al. Genetic diversity of white sharks, Carcharodon carcharias, in the Northwest Atlantic and Southern Africa. J. Hered. 106(3), 258–265 (2015).
pubmed: 25762777 doi: 10.1093/jhered/esv001
Andreotti, S. et al. An integrated mark-recapture and genetic approach to estimate the population size of white sharks in South Africa. Mar. Ecol. Prog. Ser. 552, 241–253 (2016).
doi: 10.3354/meps11744
Fu, M. N., Wang, J., Ding, S. X., Du, J. Y. & Su, Y. Q. Studies on the genetic structure and genetic subdivision of white spotted bamboo shark, Chiloscyllium plagiosum, by analyzing mitochondrial Cyt b genes. J. Trop. Oceanogr. 29, 86–91 (2010).
Karl, S. A., Castro, A. L. F. & Garla, R. C. Population genetics of the nurse shark (Ginglymostoma cirratum) in the western Atlantic. Mar. Biol. 159, 489–498 (2012).
doi: 10.1007/s00227-011-1828-y
Whitney, N. M., Robbins, W. D., Schultz, J. K., Bowen, B. W. & Holland, K. N. Oceanic dispersal in a sedentary reef shark (Triaenodon obesus): Genetic evidence for extensive connectivity without a pelagic larval stage. J. Biogeogr. 39(6), 1144–1156 (2012).
doi: 10.1111/j.1365-2699.2011.02660.x
Barker, A. M., Nosal, A. P., Lewallen, E. A. & Burton, R. S. Genetic structure of leopard shark (Triakis semifasciata) populations along the Pacific coast of North America. J. Exp. Mar. Biol. Ecol. 472, 151–157 (2015).
doi: 10.1016/j.jembe.2015.06.020
Bitalo, D. N., Maduna, S. N., da Silva, C., Roodt-Wilding, R. & Bester-van der Merwe, A. E. Differential gene flow patterns for two commercially exploited shark species, tope (Galeorhinus galeus) and common smoothhound (Mustelus mustelus) along the south–west coast of South Africa. Fish. Res. 172, 190–196 (2015).
doi: 10.1016/j.fishres.2015.07.003
Fricke, R., Eschmeyer, W. N. & Van der Laan, R. (eds). Eschmeyer's Catalog of Fishes: Genera, Species, References. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2020).
Wilga, C. A. D. & Lauder, G. V. In Biology of Sharks and Their Relatives (eds Jeffrey, C. C. et al.) 139–164 (CRC Press, 2004).
doi: 10.1201/9780203491317.pt2
Compagno, L. J. V. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Volume 2 Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes) (FAO, 2001).
Miki, T. Spawning, hatching, and growth of the whitespotted bamboo shark, Chiloscyllium plagiosum. J. Jpn. Assoc. Zool. Aqua. 36, 10–19 (1994).
Masuda, M. & Teshima, M. Reproduction of the whitespotted bamboo shark (Chiloscyllium plagiosum) in an aquarium. J. Jpn. Assoc. Zool. Aqua. 36, 20–23 (1994).
Jagadis, I. & Ignatius, B. Captive breeding and rearing of grey bamboo shark, Chiloscyllium griseum (Müller 1839). Indian J. Fish. 50, 539–542 (2003).
Chen, W. K. & Liu, K. M. Reproductive biology of white spotted bamboo shark Chiloscyllium plagiosum in the northern waters off Taiwan. Fish. Sci. 72, 1215–1224 (2006).
doi: 10.1111/j.1444-2906.2006.01279.x
Allen, G. R., Erdmann, M. V., White, W. T., Fahmi, & Dudgeon, C. L. Review of the bamboo shark genus Hemiscyllium (Orectolobiformes: Hemiscyllidae). J. Ocean Sci. Found. 23, 51–97 (2016).
Dudgeon, C. L., Bennett, M. B. & Kyne, P. M. Chiloscyllium punctatum. The IUCN Red List of Threatened Species 2016: e.T41872A68616745. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41872A68616745.en (2016).
SEAFDEC. Report on the Study on Shark Production, Utilization and Management in the ASEAN Region 2003–2004 (Bangkok, 2006).
Department of Fisheries Malaysia. Malaysia National Plan of Action for the Conservation and Management of Shark (Putrajaya, 2006).
Arai, T. & Azri, A. Diversity, occurrence and conservation of sharks in the southern South China Sea. PLoS One 14(3), e0213864 (2019).
pubmed: 30901342 pmcid: 6430512 doi: 10.1371/journal.pone.0213864
Phillips, N. M., Chaplin, J. A., Morgan, D. L. & Peverell, S. C. Population genetic structure and genetic diversity of three critically endangered Pristis sawfishes in Australian waters. Mar. Biol. Res. 158(4), 903–915 (2011).
doi: 10.1007/s00227-010-1617-z
Bitalo, D. N., Maduna, S. N., da Silva, C., Roodt-Wilding, R. & Bester-van der Merwe, A. E. Differential gene flow patterns for two commercially exploited shark species, tope (Galeorhinus galeus) and common smoothhound (Mustelus mustelus) along the south-west coast of South Africa. Fish. Res. 172, 190–196 (2015).
doi: 10.1016/j.fishres.2015.07.003
Vargas-Caro, C., Bustamante, C., Bennett, M. B. & Ovenden, J. R. Towards sustainable fishery management for skates in South America: The genetic population structure of Zearaja chilensis and Dipturus trachyderma (Chondrichthyes, Rajiformes) in the south-east Pacific Ocean. PLoS One 12(2), e0172255 (2017).
pubmed: 28207832 pmcid: 5313215 doi: 10.1371/journal.pone.0172255
Puckridge, M., Last, P. R., White, W. T. & Andreakis, N. Phylogeography of the Indo-West Pacific maskrays (Dasyatidae, Neotrygon): A complex example of chondrichthyan radiation in the Cenozoic. Ecol. Evol. 3(2), 217–232 (2013).
pubmed: 23467194 doi: 10.1002/ece3.448
Kousteni, V., Kasapidis, P., Kotoulas, G. & Megalofonou, P. Strong population genetic structure and contrasting histories for the small-spotted catshark (Scyliorhinus canicula) in the Mediterranean Sea. Heredity 114(3), 333–343 (2015).
pubmed: 25469687 doi: 10.1038/hdy.2014.107
Le Port, A. & Lavery, S. Population structure and phylogeography of the short-tailed stingray, Dasyatis brevicaudata (Hutton 1875), in the Southern Hemisphere. J. Hered. 103(2), 174–185 (2012).
pubmed: 22174443 doi: 10.1093/jhered/esr131
Ovenden, J. R. et al. Negligible evidence species for regional genetic population structure for two shark species Rhizoprionodon acutus (Rüppell, 1837) and Sphyrna lewini (Griffith & Smith, 1834) with contrasting biology. Mar. Biol. 158, 1497–1509 (2011).
doi: 10.1007/s00227-011-1666-y
Okes, N. & Sant, G. An Overview of Major Shark Traders, Catchers and Species (Cambridge, 2019).
Dudgeon, C. L., Broderick, D. & Ovenden, R. IUCN classification zones concord with, but underestimate, the population genetic structure of the zebra shark Stegostoma fasciatum in the Indo-West Pacific. Mol. Ecol. 18, 248–261 (2009).
pubmed: 19192179 doi: 10.1111/j.1365-294X.2008.04025.x
DiBattista, J. D., Rocha, L. A., Craig, M. T., Feldheim, K. A. & Bowen, B. W. Phylogeography of two closely related Indo-Pacific butterflyfishes reveals divergent evolutionary histories and discordant results from mtDNA and microsatellites. J. Hered. 103(5), 617–629 (2012).
pubmed: 22888133 doi: 10.1093/jhered/ess056
Ludt, W. B., Bernal, M. A., Bowen, B. W. & Rocha, L. A. Living in the past: Phylogeography and population histories of Indo-Pacific wrasses (genus Halichoeres) in shallow lagoons versus outer reef slopes. PLoS One 7(6), e38042 (2012).
pubmed: 22701597 pmcid: 3368945 doi: 10.1371/journal.pone.0038042
Schultz, J. K. et al. Global phylogeography and seascape genetics of the lemon sharks (genus Negaprion). Mol. Ecol. 17, 5336–5348 (2008).
pubmed: 19121001 doi: 10.1111/j.1365-294X.2008.04000.x
Lim, H. C., Rahman, M. A., Lim, S. L. H., Moyle, R. G. & Sheldon, F. H. Revisiting Wallace’s haunt: Coalescent simulations and comparative niche modeling reveal historical mechanisms that promoted avian population divergence in the Malay Archipelago. Evolution 65(2), 321–334 (2010).
pubmed: 20796023 doi: 10.1111/j.1558-5646.2010.01105.x
Tan, M. P., Jamsari, A. F. J. & Siti Azizah, M. N. Phylogeographic pattern of the Striped Snakehead, Channa striata in Sundaland: Ancient river connectivity, geographical and anthropogenic signatures. PLoS One 7(12), e52089 (2012).
pubmed: 23284881 pmcid: 3527338 doi: 10.1371/journal.pone.0052089
Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).
doi: 10.1016/S1367-9120(01)00069-4
Sepkoski, J. A compendium of fossil marine animal genera (Chondrichthyes entry). Bull. Am. Paleontol. 364, 560 (2002).
Reid, D. G. et al. Comparative phylogeography and species boundries in Echinolittorina snails in the central Indo-West Pacific. J. Biogeogr. 33(6), 990–1006 (2006).
doi: 10.1111/j.1365-2699.2006.01469.x
Polgar, G. et al. Phylogeography and demographic history of two widespread Indo-Pacific mudskippers (Gobiidae: Periophthalmus). Mol. Phylogenet. Evol. 73, 161–176 (2014).
pubmed: 24486991 doi: 10.1016/j.ympev.2014.01.014
Leonard, J. A. et al. Phylogeography of vertebrates on the Sunda Shelf: A multi-species comparison. J. Biogeogr. 42(5), 871–879 (2015).
doi: 10.1111/jbi.12465
Ma, K. Y. et al. Contrasting population genetic structure in three aggregating groupers (Percoidei: Epinephelidae) in the Indo-West Pacific: The importance of reproductive mode. BMC Evol. Biol. 18(1), 180 (2018).
pubmed: 30514203 pmcid: 6278153 doi: 10.1186/s12862-018-1284-0
Mason, V. C., Helgen, K. M. & Murphy, W. J. Comparative phylogeography of forest-dependent mammals reveals paleo-forest corridors throughout Sundaland. J. Hered. 110(2), 158–172 (2018).
doi: 10.1093/jhered/esy046
Crandall, E. D. et al. The molecular biogeography of the Indo-Pacific: Testing hypotheses with multispecies genetic patterns. Glob. Ecol. Biogeogr. 28, 943–960 (2019).
doi: 10.1111/geb.12905
Giles, J. L., Riginos, C., Naylor, G. J., Dharmadi, & Ovenden, J. R. Genetic and phenotypic diversity in the wedgefish Rhynchobatus australiae, a threatened ray of high value in the shark fin trade. Mar. Ecol. Prog. Ser. 548, 165–180 (2016).
doi: 10.3354/meps11617
Giles, J. L. et al. Extensive genetic population structure in the Indo-West Pacific spot-tail shark, Carcharhinus sorrah. Bull. Mar. Sci. 90(1), 427–454 (2014).
doi: 10.5343/bms.2013.1009
Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147, 915–925 (1997).
pubmed: 9335623 pmcid: 1208208 doi: 10.1093/genetics/147.2.915
Ashe, J. L. et al. Local population structure and context-dependent isolation by distance in a large coastal shark. Mar. Ecol. Prog. Ser. 520, 203–216 (2015).
doi: 10.3354/meps11069
Portnoy, D. S., McDowell, J. R., Heist, E. J., Musick, J. A. & Graves, J. E. World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus. Mol. Ecol. 19(10), 1994–2010 (2010).
pubmed: 20406387 doi: 10.1111/j.1365-294X.2010.04626.x
Domingues, R. R., Amorim, A. F. & Hilsdorf, A. W. S. Genetic identification of Carcharhinus sharks from the southwest Atlantic Ocean (Chondrichthyes: Carcharhiniformes). J. Appl. Ichthyol. 29(4), 738–742 (2013).
doi: 10.1111/jai.12154
Hernández, S. et al. Demographic history and the South Pacific dispersal barrier for school shark (Galeorhinus galeus) inferred by mitochondrial DNA and microsatellite DNA mark. Fish. Res. 167, 132–142 (2015).
doi: 10.1016/j.fishres.2015.02.010
Britten, R. J. Rates of DNA sequence evolution differ between taxonomic groups. Science 231(4744), 1393–1398 (1986).
pubmed: 3082006 doi: 10.1126/science.3082006
Belgrano, A. & Fowler, C. W. How fisheries affect evolution. Science 342(6163), 1176–1177 (2013).
pubmed: 24311669 doi: 10.1126/science.1245490
Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23(1), 29–39 (2014).
pubmed: 24372754 doi: 10.1111/mec.12509
Martinez, A. S., Willoughby, J. R. & Christie, M. R. Genetic diversity in fishes is influenced by habitat type and life-history variation. Ecol. Evol. 8(23), 12022–12031 (2018).
pubmed: 30598796 pmcid: 6303716 doi: 10.1002/ece3.4661
Kohler, N. E. & Turner, P. A. In The Behavior and Sensory Biology of Elasmobranch Fishes: An Anthology in Memory of Donald Richard Nelson (eds Tricas, T. C. & Gruber, S. H.) 191–224 (Springer, 2001).
doi: 10.1007/978-94-017-3245-1_12
Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations. J. Biogeogr. 27(5), 1153–1167 (2000).
doi: 10.1046/j.1365-2699.2000.00489.x
Lipa, B. J., Barrick, D. E., Bourg, J. & Nyden, B. B. HF radar detection of tsunamis. J. Oceanogr. 62, 705–716 (2006).
doi: 10.1007/s10872-006-0088-9
Lee, W. K. & Zaharuddin, N. H. A. Lagragian investigation on the compound effects of reclamation and proposed tidal barrage to the environmental flow. Jurnal Kejuruteraan 27, 71–80 (2015).
doi: 10.17576/jkukm-2015-27-10
Mohd Rusli, M. H. Straits of Malacca and Singapore: Pride of the Malay Archipelago, priceless maritime heritage of the world. Jurnal Hadhari Special Edition, 109–127 (2012).
Susanto, R. D. et al. Observations of the Karimata Strait throughflow from December 2007 to November 2008. Acta Oceanol. Sin. 32(5), 1–6 (2013).
doi: 10.1007/s13131-013-0307-3
Wei, Z. et al. Tidal elevation, current, and energy flux in the area between the South China Sea and Java Sea. Ocean Sci. 12(2), 517–531 (2016).
doi: 10.5194/os-12-517-2016
Wee, A. K. S. et al. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronata Lam. (Rhizophoraceae) in Southeast Asia. J. Biogeogr. 41(5), 954–964 (2014).
doi: 10.1111/jbi.12263
Heiden, T. C. K., Haines, A. N., Manire, C., Lombardi, J. & Koob, T. J. Structure and permeability of the egg capsule of the bonnethead shark, Sphyrna tiburo. J. Exp. Zool. A Comp. Exp. Biol. 303(7), 577–589 (2005).
pubmed: 15945073 doi: 10.1002/jez.a.171
Ehrlich, H. Biological Materials of Marine Origin: Vertebrates (Springer, 2015).
doi: 10.1007/978-94-007-5730-1
Gordon, C. The great eggcase hunt: Celebrating >100,000 records. The Shark Trust (2016).
Flammang, B. E., Ebert, D. A. & Cailliet, G. M. Intraspecific and interspecific spatial distribution of three eastern North Pacific catshark species and their egg cases (Chondrichthyes: Scyliorhinidae). Breviora 525(1), 1–18 (2011).
doi: 10.3099/0006-9698-525.1.1
Benzie, J. A. H. Genetic structure of coral reef organisms: Ghosts of dispersal past. Am. Zool. 39, 131–145 (1999).
doi: 10.1093/icb/39.1.131
Crandall, E. D., Frey, M. A., Grosberg, R. K. & Barber, P. H. Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. Mol. Ecol. 17(2), 611–626 (2008).
pubmed: 18179436 doi: 10.1111/j.1365-294X.2007.03600.x
Hueter, R. E., Heupel, M. R., Heist, E. J. & Keeney, D. B. Evidence of philopatry in sharks and implications for the management of shark fisheries. J. Northwest Atl. Fish. Sci. 35, 239–247 (2005).
doi: 10.2960/J.v35.m493
Department of Fisheries Malaysia. Annual Fisheries Statistics, Department of Fisheries Malaysia. Ministry of Agriculture and Agro-based Industry Malaysia https://www.dof.gov.my/index.php/pages/view/3343 (2017).
Fisheries Research Institute (FRI). Fisheries Resources Survey in Malaysian Waters 2013–2016 Executive Summary (Pulau Pinang, 2017)
Ovenden, J. R., Kashiwagi, T., Broderick, D., Giles, J. & Salini, J. The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago. BMC Evol. Biol. 9, 40 (2009).
pubmed: 19216767 pmcid: 2660307 doi: 10.1186/1471-2148-9-40
Bernal, M. A. et al. Long-term sperm storage in the brownbanded bamboo shark Chiloscyllium punctatum. J. Fish Biol. 86(3), 1171–1176 (2015).
pubmed: 25545440 doi: 10.1111/jfb.12606
Chapman, C. A., Harahush, B. K. & Renshaw, G. M. C. The physiological tolerance of the grey carpet shark (Chiloscyllium punctatum) and the epaulette shark (Hemiscyllium ocellatum) to anoxic exposure at three seasonal temperatures. Fish Physiol. Biochem. 37(3), 387–399 (2011).
pubmed: 20922566 doi: 10.1007/s10695-010-9439-y
Hoeksema, B. W. In Biogeography, Time, and Place: Distributions, Barriers, and Islands (ed. Renema, W.) 117–178 (Springer, 2007).
doi: 10.1007/978-1-4020-6374-9_5
Galindo-Cardona, A., Acevedo-Gonzalez, J. P., Rivera-Marchand, B. & Giray, T. Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico. BMC Genet. 14, 65 (2013).
pubmed: 23915100 pmcid: 3750330 doi: 10.1186/1471-2156-14-65
Verscheure, S., Backeljau, T. & Desmyter, S. Reviewing population studies for forensic purposes: Dog mitochondrial DNA. ZooKeys 365, 381–411 (2013).
doi: 10.3897/zookeys.365.5859
Hyde, J. R. et al. Shipboard identification of fish eggs and larvae by multiplex PCR, and a description of fertilized eggs of blue marlin, shortbill spearfish, and wahoo. Mar Ecol. Prog. Ser. 286, 269–277 (2005).
doi: 10.3354/meps286269
Xie, Y. J., Su, Y. Q., Weng, Z. H., Wang, J. & Wang, Z. Y. Studies on mitochondrial DNA control region and cytochrome b gene sequences of white spotted bambooshark, Chiloscyllium plagiosum. Mar. Sci. 32(12), 35–41 (2008).
Naylor, G. J. P., Ryburn, J. A., Fedrigo, O. & Lopez, J. A. In Reproductive Biology and Phylogeny: Sharks, Skates, Stingrays, and Chimaeras (eds Hamlett, W. C. & Jamieson, B. G. M.) 1–25 (Science Publishers, 2005).
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994).
pubmed: 7984417 pmcid: 308517 doi: 10.1093/nar/22.22.4673
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).
pubmed: 27004904 pmcid: 8210823 doi: 10.1093/molbev/msw054
Clarke, K. R. & Gorley, R. N. PRIMER V6; user manual/tutorial. Plymouth: PRIMER-E (2006).
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34(12), 3299–3302 (2017).
pubmed: 29029172 doi: 10.1093/molbev/msx248
Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).
doi: 10.7312/nei-92038
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567 (2010).
pubmed: 21565059 doi: 10.1111/j.1755-0998.2010.02847.x
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300. https://doi.org/10.2307/2346101 (1995).
doi: 10.2307/2346101
Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4), 1219–1228 (1997).
pubmed: 9093870 pmcid: 1207888 doi: 10.1093/genetics/145.4.1219
Swofford, D. L. PAUP*: Phylogenetic analysis using parsimony (* and other methods). Version 4 (Sunderland, 2002).
R Core Team. R: A language and environment for statistical computing (Vienna, 2018).
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).
pubmed: 2513255 pmcid: 1203831 doi: 10.1093/genetics/123.3.585
Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. U.S.A. 98(8), 4563–4568 (2001).
pubmed: 11287657 pmcid: 31874 doi: 10.1073/pnas.081068098
Beerli, P. Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics 22(3), 341–345 (2006).
pubmed: 16317072 doi: 10.1093/bioinformatics/bti803
Beerli, P. In Population Genetics for Animal Conservation, Conservation Biology Vol. 17 (eds Bertorelle, G. et al.) 42–79 (Cambridge University Press, 2009).
Beerli, P. MIGRATE version 3.6.5: A maximum likelihood and Bayesian estimator of gene flow using the coalescent. http://popgen.scs.edu/migrate.html (2008).
Beerli, P., Mashayekhi, S., Sadeghi, M., Khodaei, M. & Shaw, K. Population genetic inference with MIGRATE. Curr. Protoc. Bioinform. 68(1), e87 (2019).
doi: 10.1002/cpbi.87
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795 (1995).
doi: 10.1080/01621459.1995.10476572

Auteurs

Kean Chong Lim (KC)

Institute of Ocean and Earth Sciences, Universiti Malaya , 50603, Kuala Lumpur, Malaysia.

Amy Yee-Hui Then (AY)

Institute of Ocean and Earth Sciences, Universiti Malaya , 50603, Kuala Lumpur, Malaysia. amy_then@um.edu.my.
Institute of Biological Sciences, Universiti Malaya , 50603, Kuala Lumpur, Malaysia. amy_then@um.edu.my.

Alison Kim Shan Wee (AKS)

Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
School of Environmental and Geographical Sciences, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.

Ahemad Sade (A)

Department of Fisheries Sabah, 88624, Kota Kinabalu, Sabah, Malaysia.

Richard Rumpet (R)

Fisheries Research Institute Sarawak, Department of Fisheries Malaysia, 93744, Kuching, Sarawak, Malaysia.

Kar-Hoe Loh (KH)

Institute of Ocean and Earth Sciences, Universiti Malaya , 50603, Kuala Lumpur, Malaysia. khloh@um.edu.my.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH