Compton PET: A Simulation Study for a PET Module with Novel Geometry and Machine Learning for Position Decoding.

Compton Scattering Layer Structure Neural Network PET Scintillating Crystal Side Readout

Journal

Biomedical physics & engineering express
ISSN: 2057-1976
Titre abrégé: Biomed Phys Eng Express
Pays: England
ID NLM: 101675002

Informations de publication

Date de publication:
Jan 2019
Historique:
entrez: 22 7 2021
pubmed: 1 1 2019
medline: 1 1 2019
Statut: ppublish

Résumé

This paper describes a simulation study of a positron emission tomography (PET) detector module that can reconstruct the kinematics of Compton scattering within the scintillator. We used a layer structure, with which we could recover the positions and energies for the multiple interactions of a gamma ray in the different layers. Using the Compton scattering formalism, the sequence of interactions can be estimated. The true first interaction position extracted in the Compton scattering will help minimize the degradation of the reconstructed image resolution caused by intercrystal scatter events. Because of the layer structure, this module also has readily available user-defined resolution for the depth of interaction. The semi-monolithic crystals enable high light collection efficiency and an energy resolution of ~10% has been achieved in the simulation. We used machine learning to decode the gamma ray interaction locations, achieving an average spatial resolution of 0.40 mm. Our proposed detector design provides a pathway to increase the sensitivity of a system without affecting other key performance features.

Identifiants

pubmed: 34290885
doi: 10.1088/2057-1976/aaef03
pmc: PMC8291373
mid: NIHMS1688706
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIBIB NIH HHS
ID : R01 EB019439
Pays : United States

Références

J Nucl Med. 2012 Aug;53(8):1300-9
pubmed: 22699999
Phys Med Biol. 2005 Sep 7;50(17):4187-207
pubmed: 16177539
Phys Med Biol. 2003 Apr 7;48(7):821-48
pubmed: 12701889
Phys Med Biol. 2004 Oct 7;49(19):4543-61
pubmed: 15552416
Phys Med Biol. 2016 Mar 7;61(5):2196-2212
pubmed: 26907952
Ann Biomed Eng. 2011 Apr;39(4):1358-77
pubmed: 21321792
Phys Med Biol. 2006 Mar 7;51(5):1113-27
pubmed: 16481681
IEEE Trans Nucl Sci. 2009 Jun 1;56(3):725
pubmed: 20107527
Phys Med Biol. 2013 May 7;58(9):3061-74
pubmed: 23587636
J Nucl Med. 2016 Jul;57(7):1130-5
pubmed: 27013696
J Nucl Med. 2006 Nov;47(11):1735-45
pubmed: 17079804
Phys Med Biol. 2004 Feb 7;49(3):R13-48
pubmed: 15012005
Phys Med Biol. 2007 Apr 21;52(8):2213-28
pubmed: 17404465

Auteurs

Peng Peng (P)

Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.

Martin S Judenhofer (MS)

Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.

Adam Q Jones (AQ)

Department of Electrical and Computer Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.

Simon R Cherry (SR)

Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.

Classifications MeSH