Selective glycinergic input from vGluT3 amacrine cells confers a suppressed-by-contrast trigger feature in a subtype of M1 ipRGCs in the mouse retina.
circadian entrainment
ipRGC
non-image-forming vision
pupillary reflex
suppressed-by-contrast
vGluT3 amacrine cell
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
31
03
2021
accepted:
21
07
2021
pubmed:
23
7
2021
medline:
27
1
2022
entrez:
22
7
2021
Statut:
ppublish
Résumé
M1 intrinsically photosensitive retinal ganglion cells (ipRGCs) are known to encode absolute light intensity (irradiance) for non-image-forming visual functions (subconscious vision), such as circadian photoentrainment and the pupillary light reflex. It remains unclear how M1 cells respond to relative light intensity (contrast) and patterned visual signals. The present study identified a special form of contrast sensitivity (suppressed-by-contrast) in M1 cells, suggesting a role of patterned visual signals in regulating non-image-forming vision and a potential role of M1 ipRGCs in encoding image-forming visual cues. The study also uncovered a synaptic mechanism and a retinal circuit mediated by vesicular glutamate transporter 3 (vGluT3) amacrine cells that underlie the suppressed-by-contrast response of M1 cells. M1 ipRGC subtypes (M1a and M1b) were revealed that are distinguishable based on synaptic connectivity with vGluT3 amacrine cells, receptive field properties, intrinsic photo sensitivity and membrane excitability, and morphological features, suggesting a division of visual tasks among discrete M1 subpopulations. The M1 type ipRGC (intrinsically photosensitive retinal ganglion cell) is known to encode ambient light signals for non-image-forming visual functions such as circadian photo-entrainment and the pupillary light reflex. Here, we report that a subpopulation of M1 cells (M1a) in the mouse retina possess the suppressed-by-contrast (sbc) trigger feature that is a receptive field property previously found only in ganglion cells mediating image-forming vision. Using optogenetics and the dual patch clamp technique, we found that vesicular glutamate transporter 3 (vGluT3) (vGluT3) amacrine cells make glycinergic, but not glutamatergic, synapses specifically onto M1a cells. The spatiotemporal and pharmacological properties of visually evoked responses of M1a cells closely matched the receptive field characteristics of vGluT3 cells, suggesting a major role of the vGluT3 amacrine cell input in shaping the sbc trigger feature of M1a cells. We found that the other subpopulation of M1 cells (M1b), which did not receive a direct vGluT3 cell input, lacked the sbc trigger feature, being distinctively different from M1a cells in intrinsic photo responses, membrane excitability, receptive-field characteristics and morphological features. Together, the results reveal a retinal circuit that uses the sbc trigger feature to regulate irradiance coding and potentially send image-forming cues to non-image-forming visual centres in the brain.
Identifiants
pubmed: 34292589
doi: 10.1113/JP281717
pmc: PMC8741526
mid: NIHMS1764845
doi:
Substances chimiques
Rod Opsins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5047-5060Subventions
Organisme : NEI NIH HHS
ID : P30 EY026878
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY026065
Pays : United States
Organisme : NEI NIH HHS
ID : P30 EY000785
Pays : United States
Informations de copyright
© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society.
Références
Nat Neurosci. 2001 Dec;4(12):1165
pubmed: 11713469
Nature. 2002 Jan 31;415(6871):493
pubmed: 11823848
Cell Rep. 2016 May 17;15(7):1369-1375
pubmed: 27160915
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5628-33
pubmed: 20212117
J Neurosci. 2017 Aug 30;37(35):8428-8443
pubmed: 28760858
J Comp Neurol. 2018 Sep 1;526(13):2010-2018
pubmed: 29888785
J Neurophysiol. 2008 Jul;100(1):371-84
pubmed: 18480363
Cell. 2017 Nov 2;171(4):865-876.e16
pubmed: 28965762
Neuron. 2010 Dec 22;68(6):1159-72
pubmed: 21172616
Cell Rep. 2017 Oct 24;21(4):1048-1062
pubmed: 29069587
Cell Rep. 2019 Dec 10;29(11):3349-3355.e2
pubmed: 31825819
J Neurosci. 2014 Jan 8;34(2):408-17
pubmed: 24403141
Eur J Neurosci. 2006 Aug;24(4):1117-23
pubmed: 16930437
J Neurosci. 2007 Apr 4;27(14):3904-9
pubmed: 17409255
Graefes Arch Clin Exp Ophthalmol. 2011 Mar;249(3):313-4
pubmed: 21336701
J Physiol. 2007 Jul 1;582(Pt 1):279-96
pubmed: 17510182
Cell Rep. 2017 May 16;19(7):1343-1350
pubmed: 28514655
Science. 2002 Feb 8;295(5557):1065-70
pubmed: 11834834
J Physiol. 2014 Apr 1;592(7):1619-36
pubmed: 24396062
J Neurosci. 2013 Mar 13;33(11):4642-56
pubmed: 23486939
Nat Neurosci. 2001 Jun;4(6):621-6
pubmed: 11369943
Neuron. 2016 Apr 6;90(1):27-34
pubmed: 26996083
Curr Biol. 2017 Jun 5;27(11):1633-1640.e3
pubmed: 28528901
J Neurosci. 2002 Jan 1;22(1):RC191
pubmed: 11756521
Front Cell Neurosci. 2018 Aug 27;12:269
pubmed: 30210298
Vis Neurosci. 2011 Sep;28(5):381-92
pubmed: 21864449
Neuron. 2014 Nov 19;84(4):708-15
pubmed: 25456497
Science. 2002 Dec 13;298(5601):2211-3
pubmed: 12481140
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9577-9583
pubmed: 32273387
Science. 2002 Feb 8;295(5557):1070-3
pubmed: 11834835
Science. 2017 Mar 10;355(6329):1072-1076
pubmed: 28280205
Science. 1967 Jul 7;157(3784):90-2
pubmed: 6026674
Science. 2002 Dec 13;298(5601):2213-6
pubmed: 12481141
Nature. 2005 Feb 17;433(7027):749-54
pubmed: 15716953
Neuron. 2005 Dec 22;48(6):1001-10
pubmed: 16364903
Elife. 2015 May 19;4:
pubmed: 25988808
Neuron. 2010 Feb 25;65(4):472-9
pubmed: 20188652
eNeuro. 2019 Aug 26;6(4):
pubmed: 31387875
J Neurosci. 2015 Jul 29;35(30):10815-20
pubmed: 26224863
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11518-11523
pubmed: 28973895
Science. 2020 May 1;368(6490):527-531
pubmed: 32355031
J Neurosci. 2009 Jan 14;29(2):476-82
pubmed: 19144848
Nature. 2011 Jul 17;476(7358):92-5
pubmed: 21765429
J Physiol. 1967 Feb;188(3):285-307
pubmed: 6032202
Nature. 2015 Aug 27;524(7566):466-470
pubmed: 26287463
Nature. 1981 Jul 23;292(5821):344-5
pubmed: 7254331
J Comp Neurol. 2010 Jul 1;518(13):2405-22
pubmed: 20503419