Hypoxic preconditioning rejuvenates mesenchymal stem cells and enhances neuroprotection following intracerebral hemorrhage via the miR-326-mediated autophagy.


Journal

Stem cell research & therapy
ISSN: 1757-6512
Titre abrégé: Stem Cell Res Ther
Pays: England
ID NLM: 101527581

Informations de publication

Date de publication:
22 07 2021
Historique:
received: 26 03 2021
accepted: 27 06 2021
entrez: 23 7 2021
pubmed: 24 7 2021
medline: 7 8 2021
Statut: epublish

Résumé

Intracerebral hemorrhage (ICH) is a major public health concern, and mesenchymal stem cells (MSCs) hold great potential for treating ICH. However, the quantity and quality of MSCs decline in the cerebral niche, limiting the potential efficacy of MSCs. Hypoxic preconditioning is suggested to enhance the survival of MSCs and augment the therapeutic efficacy of MSCs in ICH. MicroRNAs (miRNAs) are known to mediate cellular senescence. However, the precise mechanism by which miRNAs regulate the senescence of hypoxic MSCs remains to be further studied. In the present study, we evaluated whether hypoxic preconditioning enhances the survival and therapeutic effects of olfactory mucosa MSC (OM-MSC) survival and therapeutic effects in ICH and investigated the mechanisms by which miRNA ameliorates hypoxic OM-MSC senescence. In the in vivo model, ICH was induced in mice by administration of collagenase IV. At 24 h post-ICH, 5 × 10 In the in vivo model, transplanted OM-MSCs with hypoxic preconditioning exhibited increased survival and tissue-protective capability. In the in vitro model, hypoxia preconditioning decreased the senescence of OM-MSCs exposed to hemin. Bioinformatic analysis identified that microRNA-326 (miR-326) expression was significantly increased in the hypoxia OM-MSCs compared with that of normoxia OM-MSCs. Upregulation of miR-326 alleviated normoxia OM-MSC senescence, whereas miR-326 downregulation increased hypoxia OM-MSC senescence. Furthermore, we showed that miR-326 alleviated cellular senescence by upregulating autophagy. Mechanistically, miR-326 promoted the autophagy of OM-MSCs via the PI3K signaling pathway by targeting polypyrimidine tract-binding protein 1 (PTBP1). Our study shows that hypoxic preconditioning delays OM-MSC senescence and augments the therapeutic efficacy of OM-MSCs in ICH by upregulating the miR-326/PTBP1/PI3K-mediated autophagy.

Sections du résumé

BACKGROUND
Intracerebral hemorrhage (ICH) is a major public health concern, and mesenchymal stem cells (MSCs) hold great potential for treating ICH. However, the quantity and quality of MSCs decline in the cerebral niche, limiting the potential efficacy of MSCs. Hypoxic preconditioning is suggested to enhance the survival of MSCs and augment the therapeutic efficacy of MSCs in ICH. MicroRNAs (miRNAs) are known to mediate cellular senescence. However, the precise mechanism by which miRNAs regulate the senescence of hypoxic MSCs remains to be further studied. In the present study, we evaluated whether hypoxic preconditioning enhances the survival and therapeutic effects of olfactory mucosa MSC (OM-MSC) survival and therapeutic effects in ICH and investigated the mechanisms by which miRNA ameliorates hypoxic OM-MSC senescence.
METHODS
In the in vivo model, ICH was induced in mice by administration of collagenase IV. At 24 h post-ICH, 5 × 10
RESULTS
In the in vivo model, transplanted OM-MSCs with hypoxic preconditioning exhibited increased survival and tissue-protective capability. In the in vitro model, hypoxia preconditioning decreased the senescence of OM-MSCs exposed to hemin. Bioinformatic analysis identified that microRNA-326 (miR-326) expression was significantly increased in the hypoxia OM-MSCs compared with that of normoxia OM-MSCs. Upregulation of miR-326 alleviated normoxia OM-MSC senescence, whereas miR-326 downregulation increased hypoxia OM-MSC senescence. Furthermore, we showed that miR-326 alleviated cellular senescence by upregulating autophagy. Mechanistically, miR-326 promoted the autophagy of OM-MSCs via the PI3K signaling pathway by targeting polypyrimidine tract-binding protein 1 (PTBP1).
CONCLUSIONS
Our study shows that hypoxic preconditioning delays OM-MSC senescence and augments the therapeutic efficacy of OM-MSCs in ICH by upregulating the miR-326/PTBP1/PI3K-mediated autophagy.

Identifiants

pubmed: 34294127
doi: 10.1186/s13287-021-02480-w
pii: 10.1186/s13287-021-02480-w
pmc: PMC8296710
doi:

Substances chimiques

MIRN326 microRNA, mouse 0
MicroRNAs 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

413

Informations de copyright

© 2021. The Author(s).

Références

Stem Cell Res Ther. 2021 Feb 25;12(1):147
pubmed: 33632305
Stem Cell Res Ther. 2018 Oct 25;9(1):284
pubmed: 30359321
Bone. 2021 Jan;142:115679
pubmed: 33022453
Stroke. 2003 Sep;34(9):2258-63
pubmed: 12881607
Stem Cell Res Ther. 2016 Apr 22;7(1):61
pubmed: 27103465
Glia. 2020 Jan;68(1):178-192
pubmed: 31441125
Aging Cell. 2020 Apr;19(4):e13128
pubmed: 32196916
J Am Heart Assoc. 2019 Jan 8;8(1):e010157
pubmed: 30616426
Stem Cells Dev. 2021 May 15;30(10):526-536
pubmed: 33715421
Aging Cell. 2017 Oct;16(5):912-915
pubmed: 28782921
Stem Cell Res Ther. 2017 Nov 2;8(1):242
pubmed: 29096705
Chem Res Toxicol. 2019 Nov 18;32(11):2192-2203
pubmed: 31642316
Mol Neurobiol. 2015 Aug;52(1):792-803
pubmed: 25288154
Aging Cell. 2018 Feb;17(1):
pubmed: 29210174
CNS Neurosci Ther. 2020 Sep;26(9):952-961
pubmed: 32459063
Stem Cell Res Ther. 2019 Nov 15;10(1):323
pubmed: 31730013
Stem Cell Res Ther. 2021 Apr 14;12(1):240
pubmed: 33853680
Aging Dis. 2018 Dec 4;9(6):1103-1121
pubmed: 30574422
Aging Cell. 2019 Apr;18(2):e12909
pubmed: 30706629
Stem Cells Int. 2021 Feb 1;2021:6638249
pubmed: 33603790
Stroke. 1986 May-Jun;17(3):472-6
pubmed: 3715945
Sci China Life Sci. 2014 Feb;57(2):171-80
pubmed: 24448905
Biomaterials. 2013 Dec;34(37):9717-27
pubmed: 24034503
J Cereb Blood Flow Metab. 2014 Mar;34(3):441-9
pubmed: 24326392
Stem Cell Res Ther. 2020 Dec 11;11(1):535
pubmed: 33308306
Nanoscale Res Lett. 2021 Apr 20;16(1):63
pubmed: 33877455
Cell Mol Neurobiol. 2017 Aug;37(6):1115-1129
pubmed: 27858286
Clin Transl Med. 2020 Jun;10(2):e113
pubmed: 32564521
Stem Cell Res. 2018 Apr;28:75-86
pubmed: 29448133
Front Cell Neurosci. 2020 Nov 12;14:580206
pubmed: 33281557
J Control Release. 2020 Apr 10;320:381-391
pubmed: 31972243
Front Cell Dev Biol. 2020 Oct 30;8:586541
pubmed: 33195239
J Cell Biochem. 2019 Sep;120(9):14995-15006
pubmed: 31135066
J Allergy Clin Immunol. 2018 Apr;141(4):1202-1207
pubmed: 29074454
J Cell Physiol. 2019 Feb;234(2):1354-1368
pubmed: 30076722
Cell Death Differ. 2018 Nov;25(11):1921-1937
pubmed: 30042494
J Cell Physiol. 2020 Jan;235(1):480-493
pubmed: 31385301
J Cell Mol Med. 2017 Oct;21(10):2452-2464
pubmed: 28374977
Stem Cell Res Ther. 2015 Jul 24;6:133
pubmed: 26204925
J Neuroinflammation. 2015 Apr 01;12:61
pubmed: 25890011
Cell Transplant. 2019 May;28(5):568-584
pubmed: 30832493
Front Endocrinol (Lausanne). 2021 Jan 11;11:609186
pubmed: 33505358
Mol Neurobiol. 2016 Oct;53(8):5269-77
pubmed: 26409481
J Biol Chem. 2009 Nov 27;284(48):33161-8
pubmed: 19721136
J Cell Physiol. 2018 Nov;233(11):8930-8939
pubmed: 29856478
Stem Cells Int. 2021 Jan 6;2021:6616240
pubmed: 33505470
Stem Cell Rev Rep. 2020 Apr;16(2):344-356
pubmed: 31927699
Cell Mol Life Sci. 2011 Jan;68(2):325-36
pubmed: 20652617
J Cell Biochem. 2015 Feb;116(2):310-9
pubmed: 25185536
Adv Exp Med Biol. 2018;1056:11-26
pubmed: 29754172
Stroke. 2009 Feb;40(2):394-9
pubmed: 19038914
Front Cell Dev Biol. 2021 Mar 02;9:628463
pubmed: 33738284
Front Cell Dev Biol. 2020 Apr 24;8:276
pubmed: 32391362
Stem Cell Res Ther. 2014 Nov 23;5(6):130
pubmed: 25418617
Cell Mol Life Sci. 2015 May;72(9):1699-713
pubmed: 25572296
Stem Cell Res Ther. 2018 Nov 21;9(1):326
pubmed: 30463591
Cell Transplant. 2015;24(12):2449-61
pubmed: 24594369
Exp Neurol. 2015 Oct;272:78-87
pubmed: 25797577
Mech Ageing Dev. 2017 Dec;168:20-29
pubmed: 28847486
J Cell Biochem. 2019 Sep;120(9):14372-14382
pubmed: 30963640
Stem Cell Res Ther. 2018 Jan 15;9(1):9
pubmed: 29335016
J Clin Invest. 2011 Jul;121(7):2808-20
pubmed: 21670501
Stem Cells Dev. 2012 May 20;21(8):1321-32
pubmed: 22356678
J Cereb Blood Flow Metab. 2016 Dec;36(12):2134-2145
pubmed: 26661220
ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40108-40120
pubmed: 32808527
Annu Rev Pharmacol Toxicol. 2013;53:89-106
pubmed: 23294306
Front Cell Dev Biol. 2020 May 08;8:302
pubmed: 32457903
Stem Cell Res Ther. 2017 Apr 18;8(1):89
pubmed: 28420436
Cell Death Dis. 2019 Feb 12;10(2):134
pubmed: 30755595
Stem Cells Dev. 2021 Feb;30(3):128-134
pubmed: 33349130
Stroke. 1998 Oct;29(10):2136-40
pubmed: 9756595
Aging (Albany NY). 2020 Jun 7;12(11):10931-10950
pubmed: 32507769
CNS Neurosci Ther. 2012 Oct;18(10):847-54
pubmed: 22934896
Life Sci. 2021 Jan 15;265:118861
pubmed: 33301811
J Mol Neurosci. 2019 Oct;69(2):197-214
pubmed: 31270675
Stem Cells Transl Med. 2019 Nov;8(11):1157-1169
pubmed: 31322326
J Nucl Med. 2011 Jan;52(1):90-7
pubmed: 21149480
Clin Pharmacol Ther. 2013 Jan;93(1):105-16
pubmed: 23212104
Exp Neurol. 2008 Apr;210(2):656-70
pubmed: 18279854
Br J Radiol. 2014 Mar;87(1035):20130676
pubmed: 24588669
Cell Transplant. 2013;22(6):977-91
pubmed: 23031629

Auteurs

Jianyang Liu (J)

Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Jialin He (J)

Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Lite Ge (L)

Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Han Xiao (H)

Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Yan Huang (Y)

National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.

Liuwang Zeng (L)

Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Zheng Jiang (Z)

Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Ming Lu (M)

Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China. lumingcs163@163.com.
Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China. lumingcs163@163.com.

Zhiping Hu (Z)

Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. zhipinghu@csu.edu.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH