Transcriptional-regulatory convergence across functional MDD risk variants identified by massively parallel reporter assays.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
22 07 2021
Historique:
received: 15 03 2021
accepted: 16 06 2021
revised: 02 06 2021
entrez: 23 7 2021
pubmed: 24 7 2021
medline: 3 8 2021
Statut: epublish

Résumé

Family and population studies indicate clear heritability of major depressive disorder (MDD), though its underlying biology remains unclear. The majority of single-nucleotide polymorphism (SNP) linkage blocks associated with MDD by genome-wide association studies (GWASes) are believed to alter transcriptional regulators (e.g., enhancers, promoters) based on enrichment of marks correlated with these functions. A key to understanding MDD pathophysiology will be elucidation of which SNPs are functional and how such functional variants biologically converge to elicit the disease. Furthermore, retinoids can elicit MDD in patients and promote depressive-like behaviors in rodent models, acting via a regulatory system of retinoid receptor transcription factors (TFs). We therefore sought to simultaneously identify functional genetic variants and assess retinoid pathway regulation of MDD risk loci. Using Massively Parallel Reporter Assays (MPRAs), we functionally screened over 1000 SNPs prioritized from 39 neuropsychiatric trait/disease GWAS loci, selecting SNPs based on overlap with predicted regulatory features-including expression quantitative trait loci (eQTL) and histone marks-from human brains and cell cultures. We identified >100 SNPs with allelic effects on expression in a retinoid-responsive model system. Functional SNPs were enriched for binding sequences of retinoic acid-receptive transcription factors (TFs), with additional allelic differences unmasked by treatment with all-trans retinoic acid (ATRA). Finally, motifs overrepresented across functional SNPs corresponded to TFs highly specific to serotonergic neurons, suggesting an in vivo site of action. Our application of MPRAs to screen MDD-associated SNPs suggests a shared transcriptional-regulatory program across loci, a component of which is unmasked by retinoids.

Identifiants

pubmed: 34294677
doi: 10.1038/s41398-021-01493-6
pii: 10.1038/s41398-021-01493-6
pmc: PMC8298436
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

403

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : 1F30MH1116654
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : 1R01MH116999
Organisme : Simons Foundation
ID : 571009
Organisme : NIMH NIH HHS
ID : R01 MH116999
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD103525
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002345
Pays : United States

Informations de copyright

© 2021. The Author(s).

Références

Smith K. Mental health: a world of depression. Nature. 2014;515:180–1.
doi: 10.1038/515180a
Üstün TB, Ayuso-Mateos JL, Chatterji S, Mathers C, Murray CJL. Global burden of depressive disorders in the year 2000. Brit J Psychiat. 2004;184:386–92.
pubmed: 15123501 doi: 10.1192/bjp.184.5.386
Greenberg PE, Fournier A-A, Sisitsky T, Pike CT, Kessler RC. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry. 2015;76:155–62.
pubmed: 25742202 doi: 10.4088/JCP.14m09298
Papakostas GI, Fava M. Does the probability of receiving placebo influence clinical trial outcome? A meta-regression of double-blind, randomized clinical trials in MDD. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2009;19:34–40.
doi: 10.1016/j.euroneuro.2008.08.009
Flint J, Kendler KS. The genetics of major depression. Neuron. 2014;81:484–503.
pubmed: 24507187 pmcid: 3919201 doi: 10.1016/j.neuron.2014.01.027
Corfield EC, Yang Y, Martin NG, Nyholt DR. A continuum of genetic liability for minor and major depression. Transl Psychiat. 2017;7:e1131–e1131.
doi: 10.1038/tp.2017.99
Clements CC, Karlsson R, Lu Y, Juréus A, Rück C, Andersson E, et al. Genome-wide association study of patients with a severe major depressive episode treated with electroconvulsive therapy. Mol Psychiatr. 2021;1–11.
Cai N, et al. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523:588–91.
doi: 10.1038/nature14659
Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81.
pubmed: 29700475 pmcid: 5934326 doi: 10.1038/s41588-018-0090-3
Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.
pubmed: 30718901 pmcid: 6522363 doi: 10.1038/s41593-018-0326-7
Levey DF, Stein MB, Wendt FR, Pathak GA, Zhou H, Aslan M, et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat Neurosci 2021.
Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet. 2016;48:1031–6.
pubmed: 27479909 pmcid: 5706769 doi: 10.1038/ng.3623
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.
pubmed: 22955828 pmcid: 3771521 doi: 10.1126/science.1222794
Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.
doi: 10.1038/nature14248
Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22:1748–59.
pubmed: 22955986 pmcid: 3431491 doi: 10.1101/gr.136127.111
Chen J, Rozowsky J, Galeev TR, Harmanci A, Kitchen R, Bedford J, et al. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals. Nat Commun. 2016;7:11101.
pubmed: 27089393 pmcid: 4837449 doi: 10.1038/ncomms11101
Shi H, Kichaev G, Pasaniuc B. Contrasting the genetic architecture of 30 complex traits from summary association data. Am J Hum Genet. 2016;99:139–53.
pubmed: 27346688 pmcid: 5005444 doi: 10.1016/j.ajhg.2016.05.013
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.
pubmed: 28622505 pmcid: 5536862 doi: 10.1016/j.cell.2017.05.038
Corradin O, Saiakhova A, Akhtar-Zaidi B, Myeroff L, Willis J, Cowper-Sal lari R, et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res. 2014;24:1–13.
pubmed: 24196873 pmcid: 3875850 doi: 10.1101/gr.164079.113
Byrne EM, Zhu Z, Qi T, Skene NG, Bryois J, Pardinas AF, et al. Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Mol Psychiatr. 2020;1–12.
Li S, Li Y, Li X, Liu J, Huo Y, Wang J, et al. Regulatory mechanisms of major depressive disorder risk variants. Mol Psychiatr. 2020;1–20.
Furlong LI. Human diseases through the lens of network biology. Trends Genet. 2013;29:150–9.
pubmed: 23219555 doi: 10.1016/j.tig.2012.11.004
Liu X, Li YI, Pritchard JK. Trans effects on gene expression can drive omnigenic inheritance. Cell. 2019;177:1022–34.
pubmed: 31051098 pmcid: 6553491 doi: 10.1016/j.cell.2019.04.014
Leeuw CA, de, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.
pubmed: 25885710 pmcid: 4401657 doi: 10.1371/journal.pcbi.1004219
Sey NY, Hu B, Mah W, Fauni H, McAfee JC, Rajarajan P, et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci. 2020;23:583–93.
Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK, et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature. 2016;538:523–7.
pubmed: 27760116 pmcid: 5358922 doi: 10.1038/nature19847
de la Torre-Ubieta L, Stein JL, Won H, Opland CK, Liang D, Lu D, et al. The dynamic landscape of open chromatin during human cortical neurogenesis. Cell. 2018;172:289–304.
pubmed: 29307494 pmcid: 5924568 doi: 10.1016/j.cell.2017.12.014
Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.
pubmed: 26854917 pmcid: 4767558 doi: 10.1038/ng.3506
Gamazon ER, Zwinderman AH, Cox NJ, Denys D, Derks EM. Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits. Nat Genet. 2019;51:933–40.
pubmed: 31086352 pmcid: 6590703 doi: 10.1038/s41588-019-0409-8
Gerring ZF, Mina-Vargas A, Gamazon ER, Derks EM. E-MAGMA: an eQTL-informed method to identify risk genes using genome-wide association study summary statistics. Bioinformatics. 2021;btab115.
Gerring ZF, Gamazon ER, Derks EM, MDD Working Group of the Psychiatric Genetics Consortium. A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression. PLoS Genet. 2019;15:e1008245.
pubmed: 31306407 pmcid: 6658115 doi: 10.1371/journal.pgen.1008245
Xu X, Wells AB, O’Brien DR, Nehorai A, Dougherty JD. Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J Neurosci. 2014;34:1420–31.
pubmed: 24453331 pmcid: 3898298 doi: 10.1523/JNEUROSCI.4488-13.2014
Ghosh JC, Yang X, Zhang A, Lambert MH, Li H, Xu HE, et al. Interactions that determine the assembly of a retinoid X receptor/corepressor complex. Proc Natl Acad Sci USA. 2002;99:5842–7.
pubmed: 11972046 pmcid: 122864 doi: 10.1073/pnas.092043399
Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995;83:841–50.
pubmed: 8521508 doi: 10.1016/0092-8674(95)90200-7
Liao W-L, Tsai HC, Wang HF, Chang J, Lu KM, Wu HL, et al. Modular patterning of structure and function of the striatum by retinoid receptor signaling. Proc Natl Acad Sci USA. 2008;105:6765–70.
pubmed: 18443282 pmcid: 2373312 doi: 10.1073/pnas.0802109105
Bremner JD, Shearer KD, McCaffery PJ. Retinoic acid and affective disorders: the evidence for an association. J Clin Psychiatry. 2011;73:37–50.
pubmed: 21903028 pmcid: 3276716 doi: 10.4088/JCP.10r05993
Grøntved L, Waterfall JJ, Kim DW, Baek S, Sung MH, Zhao L, et al. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling. Nat Commun. 2015;6:7048.
pubmed: 25916672 doi: 10.1038/ncomms8048
Kim SH, An K, Namkung H, Rannals MD, Moore JR, Cash-Padgett T, et al. Anterior insula-associated social novelty recognition: orchestrated regulation by a local retinoic acid cascade and oxytocin signaling. bioRxiv: 2021.01.15.426848 [Preprint]. 2021. Available from: https://doi.org/10.1101/2021.01.15.426848 .
Hu P, Wang Y, Liu J, Meng FT, Qi XR, Chen L, et al. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive‐like behavior. Hippocampus. 2016;26:911–23.
pubmed: 26860546 doi: 10.1002/hipo.22574
Chen X-N, Meng QY, Bao AM, Swaab DF, Wang GH, Zhou JN. The involvement of retinoic acid receptor-α in corticotropin-releasing hormone gene expression and affective disorders. Biol Psychiat. 2009;66:832–9.
pubmed: 19596122 doi: 10.1016/j.biopsych.2009.05.031
Hu P, Liu J, Zhao J, Qi XR, Qi CC, Lucassen PJ, et al. All-trans retinoic acid-induced hypothalamus–pituitary–adrenal hyperactivity involves glucocorticoid receptor dysregulation. Transl Psychiat. 2013;3:e336.
doi: 10.1038/tp.2013.98
Cross-Disorder Group of the Psychiatric Genetics Consortium. et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179:1469–82.
doi: 10.1016/j.cell.2019.11.020
Reay WR, Atkins JR, Quidé Y, Carr VJ, Green MJ, Cairns MJ. Polygenic disruption of retinoid signalling in schizophrenia and a severe cognitive deficit subtype. Mol Psychiatr. 2018;25:719–31.
doi: 10.1038/s41380-018-0305-0
Regen F, Cosma NC, Otto LR, Clemens V, Saksone L, Gellrich J, et al. Clozapine modulates retinoid homeostasis in human brain and normalizes serum retinoic acid deficit in patients with schizophrenia. Mol Psychiatr. 2020;1–12.
Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.
pubmed: 29439242 pmcid: 5898828 doi: 10.1126/science.aad6469
Guo M, Zhu J, Yang T, Lai X, Liu X, Liu J, et al. Vitamin A improves the symptoms of autism spectrum disorders and decreases 5-hydroxytryptamine (5-HT): a pilot study. Brain Res Bull. 2018;137:35–40.
pubmed: 29122693 doi: 10.1016/j.brainresbull.2017.11.001
Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, Rogov P, et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol. 2012;30:271–7.
pubmed: 22371084 pmcid: 3297981 doi: 10.1038/nbt.2137
Kwasnieski JC, Mogno I, Myers CA, Corbo JC, Cohen BA. Complex effects of nucleotide variants in a mammalian cis-regulatory element. Proc Natl Acad Sci USA. 2012;109:19498–503.
pubmed: 23129659 pmcid: 3511131 doi: 10.1073/pnas.1210678109
Patwardhan RP, Lee C, Litvin O, Young DL, Pe'er D, Shendure J. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat Biotechnol. 2009;27:1173–5.
pubmed: 19915551 pmcid: 2849652 doi: 10.1038/nbt.1589
Mulvey B, Lagunas T, Dougherty JD. Massively parallel reporter assays: defining functional psychiatric genetic variants across biological contexts. Biol Psychiat. 2020. https://doi.org/10.1016/j.biopsych.2020.06.011 .
Choi J, Zhang T, Vu A, Ablain J, Makowski MM, Colli LM, et al. Massively parallel reporter assays of melanoma risk variants identify MX2 as a gene promoting melanoma. Nat Commun. 2020;11:2718.
pubmed: 32483191 pmcid: 7264232 doi: 10.1038/s41467-020-16590-1
Bourges C, Groff AF, Burren OS, Gerhardinger C, Mattioli K, Hutchinson A, et al. Resolving mechanisms of immune-mediated disease in primary CD4 T cells. Embo Mol Med. 2020;12:e12112.
pubmed: 32239644 pmcid: 7207160 doi: 10.15252/emmm.202012112
Ulirsch JC, Nandakumar SK, Wang L, Giani FC, Zhang X, Rogov P, et al. Systematic functional dissection of common genetic variation affecting red blood cell traits. Cell. 2016;165:1530–45.
pubmed: 27259154 pmcid: 4893171 doi: 10.1016/j.cell.2016.04.048
Tewhey R, Kotliar D, Park DS, Liu B, Winnicki S, Reilly SK, et al. Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell. 2016;165:1519–29.
pubmed: 27259153 pmcid: 4957403 doi: 10.1016/j.cell.2016.04.027
Myint L, Wang R, Boukas L, Hansen KD, Goff LA, Avramopoulos D. A screen of 1,049 schizophrenia and 30 Alzheimer’s‐associated variants for regulatory potential. Am J Med Genet Part B Neuropsychiatr Genet. 2020;183:61–73.
doi: 10.1002/ajmg.b.32761
Shen SQ, Myers CA, Hughes AE, Byrne LC, Flannery JG, Corbo JC. Massively parallel cis-regulatory analysis in the mammalian central nervous system. Genome Res. 2016;26:238–55.
pubmed: 26576614 pmcid: 4728376 doi: 10.1101/gr.193789.115
Shen SQ, Kim-Han JS, Cheng L, Xu D, Gokcumen O, Hughes AE, et al. A candidate causal variant underlying both higher intelligence and increased risk of bipolar disorder. bioRxiv: 10.1101/580258 [Preprint]. 2019. Available from: https://doi.org/10.1101/580258 .
Vockley CM, Guo C, Majoros WH, Nodzenski M, Scholtens DM, Hayes MG, et al. Massively parallel quantification of the regulatory effects of noncoding genetic variation in a human cohort. Genome Res. 2015;25:1206–14.
pubmed: 26084464 pmcid: 4510004 doi: 10.1101/gr.190090.115
Lu X, Chen X, Forney C, Donmez O, Miller D, Parameswaran S, et al. Global discovery of lupus genetic risk variant allelic enhancer activity. Nat Commun. 2021;12:1611.
pubmed: 33712590 pmcid: 7955039 doi: 10.1038/s41467-021-21854-5
Vockley CM, D'Ippolito AM, McDowell IC, Majoros WH, Safi A, Song L, et al. Direct GR binding sites potentiate clusters of TF binding across the human genome. Cell. 2016;166:1269–81. e19
pubmed: 27565349 pmcid: 5046229 doi: 10.1016/j.cell.2016.07.049
Johnson GD, Barrera A, McDowell IC, D'Ippolito AM, Majoros WH, Vockley CM, et al. Human genome-wide measurement of drug-responsive regulatory activity. Nat Commun. 2018;9:5317.
pubmed: 30575722 pmcid: 6303339 doi: 10.1038/s41467-018-07607-x
Shea TB, Fischer I, Sapirstein VS. Effect of retinoic acid on growth and morphological differentiation of mouse NB2a neuroblastoma cells in culture. Dev Brain Res. 1985;21:307–14.
doi: 10.1016/0165-3806(85)90220-2
Evangelopoulos ME, Weis J, Krüttgen A. Signalling pathways leading to neuroblastoma differentiation after serum withdrawal: HDL blocks neuroblastoma differentiation by inhibition of EGFR. Oncogene. 2005;24:3309–18.
pubmed: 15735700 doi: 10.1038/sj.onc.1208494
Ochoa D, et al. Open Targets Platform: supporting systematic drug–target identification and prioritisation. Nucleic Acids Res. 2020;49:gkaa1027.
White MA, Myers CA, Corbo JC, Cohen BA. Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChIP-seq peaks. Proc Natl Acad Sci USA. 2013;110:11952–7.
pubmed: 23818646 pmcid: 3718143 doi: 10.1073/pnas.1307449110
Donello JE, Loeb JE, Hope TJ. Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol. 1998;72:5085–92.
pubmed: 9573279 pmcid: 110072 doi: 10.1128/JVI.72.6.5085-5092.1998
Wu P-Y, Lin YC, Chang CL, Lu HT, Chin CH, Hsu TT, et al. Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cell Signal. 2009;21:881–91.
pubmed: 19385050 doi: 10.1016/j.cellsig.2009.01.036
Chowanadisai W, Graham DM, Keen CL, Rucker RB, Messerli MA. Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc Natl Acad Sci USA. 2013;110:9903–8.
pubmed: 23716681 pmcid: 3683776 doi: 10.1073/pnas.1222142110
Tian R, Gachechiladze MA, Ludwig CH, Laurie MT, Hong JY, Nathaniel D, et al. CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived. Neurons Neuron. 2019;104:239–55. e12
pubmed: 31422865 doi: 10.1016/j.neuron.2019.07.014
Coetzee SG, Coetzee GA, Hazelett DJ. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinform Oxf Engl. 2015;31:3847–9.
doi: 10.1093/bioinformatics/btv470
Dunham I, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
doi: 10.1038/nature11247
Davis CA, et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 2017;46:gkx1081.
Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006;34:D590–D598.
pubmed: 16381938 doi: 10.1093/nar/gkj144
Tuoresmäki P, Väisänen S, Neme A, Heikkinen S, Carlberg C. Patterns of genome-wide VDR locations. PLoS ONE. 2014;9:e96105.
pubmed: 24787735 pmcid: 4005760 doi: 10.1371/journal.pone.0096105
Lalevée S, Anno YN, Chatagnon A, Samarut E, Poch O, Laudet V, et al. Genome-wide in silico identification of new conserved and functional retinoic acid receptor response elements (direct repeats separated by 5 bp). J Biol Chem. 2011;286:33322–34.
pubmed: 21803772 pmcid: 3190930 doi: 10.1074/jbc.M111.263681
Song M, Yang X, Ren X, Maliskova L, Li B, Jones IR, et al. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat Genet. 2019;51:1252–62.
pubmed: 31367015 pmcid: 6677164 doi: 10.1038/s41588-019-0472-1
Hauberg ME, Zhang W, Giambartolomei C, Franzén O, Morris DL, Vyse TJ, et al. Large-scale identification of common trait and disease variants affecting gene expression. Am J Hum Genet. 2017;100:885–94.
pubmed: 28552197 pmcid: 5474225 doi: 10.1016/j.ajhg.2017.04.016
Wang D, Liu S, Warrell J, Won H, Shi X, Navarro F, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018;362:eaat8464.
pubmed: 30545857 pmcid: 6413328 doi: 10.1126/science.aat8464
Aguet F, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.
doi: 10.1038/nature24277
Ng B, White CC, Klein HU, Siebert’s SK, McCabe C, Patrick E, et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat Neurosci. 2017;20:1418–26.
pubmed: 28869584 pmcid: 5785926 doi: 10.1038/nn.4632
Xie Z, Bailey A, Kuleshov MV, Clarke D, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with enrichr. Curr Protoc. 2021;1:e90.
pubmed: 33780170 doi: 10.1002/cpz1.90 pmcid: 8152575
Mi H, et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2020;49:gkaa1106.
Grote S, Prüfer K, Kelso J, Dannemann M. ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain. Bioinformatics. 2016;32:3201–3.
pubmed: 27354695 pmcid: 5048072 doi: 10.1093/bioinformatics/btw392
Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet. 2018;50:1335–41.
pubmed: 30104761 pmcid: 6119127 doi: 10.1038/s41588-018-0184-y
Weissbrod O, Hormozdiari F, Benner C, Cui R, Ulirsch J, Gazal S, et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 2020;52:1355–63.
pubmed: 33199916 pmcid: 7710571 doi: 10.1038/s41588-020-00735-5
Dobbyn A, Huckins LM, Boocock J, Sloofman LG, Glicksberg BS, Giambartolomei C, et al. Landscape of conditional eQTL in dorsolateral prefrontal cortex and co-localization with schizophrenia GWAS. Am J Hum Genet. 2018;102:1169–84.
pubmed: 29805045 pmcid: 5993513 doi: 10.1016/j.ajhg.2018.04.011
Walker RL, Ramaswami G, Hartl C, Mancuso N, Gandal MJ, de la Torre-Ubieta L, et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell. 2019;179:750–71.
pubmed: 31626773 doi: 10.1016/j.cell.2019.09.021 pmcid: 8963725
Ciuculete DM, Voisin S, Kular L, Jonsson J, Rask-Andersen M, Mwinyi J, et al. meQTL and ncRNA functional analyses of 102 GWAS-SNPs associated with depression implicate HACE1 and SHANK2 genes. Clin Epigenetics. 2020;12:99.
pubmed: 32616021 pmcid: 7333393 doi: 10.1186/s13148-020-00884-8
Cimadamore F, Amador-Arjona A, Chen C, Huang C-T, Terskikh AV. SOX2–LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc Natl Acad Sci USA. 2013;110:E3017–E3026.
pubmed: 23884650 pmcid: 3740872 doi: 10.1073/pnas.1220176110
Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet. 2009;41:729–33.
pubmed: 19448623 pmcid: 3000552 doi: 10.1038/ng.382
Perry JR, Day F, Elks CE, Sulem P, Thompson DJ, Ferreira T, et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014;514:92–97.
pubmed: 25231870 pmcid: 4185210 doi: 10.1038/nature13545
Corre C, Shinoda G, Zhu H, Cousminer DL, Crossman C, Bellissimo C, et al. Sex-specific regulation of weight and puberty by the Lin28/let-7 axis. J Endocrinol. 2016;228:179–91.
pubmed: 26698568 doi: 10.1530/JOE-15-0360
Mulvey B, Bhatti DL, Gyawali S, Lake AM, Kriaucionis S, Ford CP, et al. Molecular and functional sex differences of noradrenergic neurons in the mouse locus coeruleus. Cell Rep. 2018;23:2225–35.
pubmed: 29791834 pmcid: 6070358 doi: 10.1016/j.celrep.2018.04.054
Marcus SM, Young EA, Kerber KB, Kornstein S, Farabaugh AH, Mitchell J, et al. Gender differences in depression: findings from the STAR*D study. J Affect Disord. 2005;87:141–50.
pubmed: 15982748 doi: 10.1016/j.jad.2004.09.008
Brody DJ, Pratt LA, Hughes JP. Prevalence of depression among adults aged 20 and over: United States, 2013-6. Nchs Data Brief. 2018;1–8.
Pan Q, et al. VARAdb: a comprehensive variation annotation database for human. Nucleic Acids Res. 2020;49:gkaa922.
Teixeira JR, Szeto RA, Carvalho VMA, Muotri AR, Papes F. Transcription factor 4 and its association with psychiatric disorders. Transl Psychiat. 2021;11:19.
doi: 10.1038/s41398-020-01138-0
Liu M, Xia Y, Ding J, Ye B, Zhao E, Choi JH, et al. Transcriptional profiling reveals a common metabolic program in high-risk human neuroblastoma and mouse neuroblastoma sphere-forming cells. Cell Rep. 2016;17:609–23.
pubmed: 27705805 pmcid: 5536348 doi: 10.1016/j.celrep.2016.09.021
Korade Ž, Kenworthy AK, Mirnics K. Molecular consequences of altered neuronal cholesterol biosynthesis. J Neurosci Res. 2009;87:866–75.
pubmed: 18951487 pmcid: 4360921 doi: 10.1002/jnr.21917
Rao C, Malaguti M, Mason JO, Lowell S. The transcription factor E2A drives neural differentiation in pluripotent cells. Development. 2020;147:dev.184093.
doi: 10.1242/dev.184093
Imayoshi I, Kageyama R. bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron. 2014;82:9–23.
pubmed: 24698265 doi: 10.1016/j.neuron.2014.03.018
Ypsilanti AR, Pattabiraman K, Catta-Preta R, Golonzhka O, Lindtner S, Tang K, et al. Transcriptional network orchestrating regional patterning of cortical progenitors. bioRxiv: 2020.11.03.366914 [Preprint]. 2020. Available from: https://doi.org/10.1101/2020.11.03.366914 .
Vierstra J, Lazar J, Sandstrom R, Halow J, Lee K, Bates D, et al. Global reference mapping of human transcription factor footprints. Nature. 2020;583:729–36.
pubmed: 32728250 pmcid: 7410829 doi: 10.1038/s41586-020-2528-x
Banerjee D, Gryder B, Bagchi S, Liu Z, Chen HC, Xu M, et al. Lineage specific transcription factor waves reprogram neuroblastoma from self-renewal to differentiation. bioRxiv: 2020.07.23.218503 [Preprint]. 2020. Available from: https://doi.org/10.1101/2020.07.23.218503 .
Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M. Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Meth. 2010;186:60–67.
doi: 10.1016/j.jneumeth.2009.11.004
Alonso A, Merchán P, Sandoval JE, Sánchez-Arrones L, Garcia-Cazorla A, Artuch R, et al. Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct. 2013;218:1229–77.
pubmed: 23052546 doi: 10.1007/s00429-012-0456-8
Nishida Y, Adati N, Ozawa R, Maeda A, Sakaki Y, Takeda T. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y. Bmc Res Notes. 2008;1:95.
pubmed: 18957096 pmcid: 2615028 doi: 10.1186/1756-0500-1-95
Marteyn A, Maury Y, Gauthier MM, Lecuyer C, Vernet R, Denis JA, et al. Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy. Cell Stem Cell. 2011;8:434–44.
pubmed: 21458401 doi: 10.1016/j.stem.2011.02.004
Johansson P, Pavey S, Hayward N. Confirmation of a BRAF mutation‐associated gene expression signature in melanoma. Pigm Cell Res. 2007;20:216–21.
doi: 10.1111/j.1600-0749.2007.00375.x
Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, et al. Molecular architecture of the mouse nervous system. Cell. 2018;174:999–1014. e22
pubmed: 30096314 pmcid: 6086934 doi: 10.1016/j.cell.2018.06.021
Ishikawa J, Sutoh C, Ishikawa A, Kagechika H, Hirano H, Nakamura S. 13‐cis‐retinoic acid alters the cellular morphology of slice‐cultured serotonergic neurons in the rat. Eur J Neurosci. 2008;27:2363–72.
pubmed: 18445226 doi: 10.1111/j.1460-9568.2008.06191.x
Schrode N, Ho SM, Yamamuro K, Dobbyn A, Huckins L, Matos MR, et al. Synergistic effects of common schizophrenia risk variants. Nat Genet. 2019;51:1475–85.
pubmed: 31548722 pmcid: 6778520 doi: 10.1038/s41588-019-0497-5
Mich JK, Graybuck LT, Hess EE, Mahoney JT, Kojima Y, Ding Y, et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep. 2021;34:108754.
pubmed: 33789096 pmcid: 8163032 doi: 10.1016/j.celrep.2021.108754
Fee C, Banasr M, Sibille E. Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives. Biol Psychiat. 2017;82:549–59.
pubmed: 28697889 doi: 10.1016/j.biopsych.2017.05.024
Smazal AL, Schalinske KL. Oral administration of retinoic acid lowers brain serotonin concentration in rats. Faseb J. 2013;27:635.6.
doi: 10.1096/fasebj.27.1_supplement.635.6
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.
pubmed: 21221095 pmcid: 3346182 doi: 10.1038/nbt.1754

Auteurs

Bernard Mulvey (B)

Departments of Genetics and Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.

Joseph D Dougherty (JD)

Departments of Genetics and Psychiatry, Washington University in St. Louis, St. Louis, MO, USA. jdougherty@wustl.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH