Self-Assembly of a Pyridine-Based Amphiphile Complexed with Regioisomeric Dihydroxy Naphthalenes into Supramolecular Nanotubes with Different Inner Diameters.
aggregation
amphiphiles
nanotubes
self-assembly
supramolecular chemistry
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
01 Sep 2021
01 Sep 2021
Historique:
received:
15
04
2021
pubmed:
24
7
2021
medline:
24
7
2021
entrez:
23
7
2021
Statut:
ppublish
Résumé
A pyridine-based amphiphile complexed with 1,5-, 1,6-, 2,6-, or 2,7-dihydroxy naphthalene self-assembled in water to form nanotubes with inner diameters of 46, 38, 24, 18, and 11 nm in which the naphthalene molecules formed J-type aggregates. In contrast, the amphiphile complexed with 1,2-, 1,3-, 1,4-, 1,7-, 1,8-, or 2,3-dihydroxy naphthalene formed nanofibers in which the naphthalene molecules formed H-type aggregates. The inner diameter of the nanotubes strongly depended on the regioisomeric dihydroxy naphthalene. UV-vis, fluorescence, infrared spectroscopy, X-ray diffraction analysis, and differential scanning calorimetry showed that nanotubes with smaller inner diameters had weaker intermolecular hydrogen bonds between the tilted amphiphiles complexed with the naphthalene molecules within the membrane walls and showed larger Stokes shifts in the excimer fluorescence of the naphthalene moiety. These findings should be useful not only for fine-tuning the inner diameters of supramolecular nanotubes but also for controlling the aggregation states of functional aromatic molecules to generate nanostructures with useful optical and electronic properties in water.
Identifiants
pubmed: 34296478
doi: 10.1002/chem.202101354
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12566-12573Subventions
Organisme : Japan Society for the Promotion of Science
ID : 20K05250
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
L. Adler-Abramovich, E. Gazit, Chem. Soc. Rev. 2014, 43, 6881-6893;
I. W. Hamley, Angew. Chem. Int. Ed. 2014, 53, 6866-6881;
Angew. Chem. 2014, 126, 6984-7000;
M. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304-7397;
P. K. Hashim, J. Bergueiro, E. W. Meijer, T. Aida, Prog. Polym. Sci. 2020, 105, 101250;
T. Shimizu, W. Ding, N. Kameta, Chem. Rev. 2020, 120, 2347-2407.
R. L. Beingessner, Y. Fana, H. Fenniri, RSC Adv. 2016, 6, 75820-75838.
J. V. A. -Requena, R. P. Herrera, D. D. Diaz, ChemPlusChem 2020, 85, 2372-2375.
T. Fukino, H. Joo, Y. Hisada, M. Obana, H. Yamagishi, T. Hikima, M. Takata, N. Fujita, T. Aida, Science 2014, 344, 499-504;
T. Shimizu, N. Kameta, W. Ding, M. Masuda, Langmuir 2016, 32, 12242-12264.
Y. Tidhar, H. Weissman, S. G. Wolf, A. Gulino, B. Rybtchinski, Chem. Eur. J. 2011, 17, 6068-6075;
F. Rodler, B. Schade, C. M. Jäger, S. Backes, F. Hampel, C. Böttcher, T. Clark, A. Hirsch, J. Am. Chem. Soc. 2015, 137, 3308-3317;
C. Tarabout, S. Roux, F. Gobeaux, N. Fay, E. Pouget, C. Meriadec, M. Ligeti, D. Thomas, M. IJsselstijn, F. Besselievre, D.-A. Buisson, J.-M. Verbavatz, M. Petitjean, C. Valéry, L. Perrin, B. Rousseau, F. Artzner, M. Paternostre, J.-C. Cintrat, Proc. Natl. Acad. Sci. USA 2011, 108, 7679-7684;
N. Kameta, W. Ding, Small 2019, 15, 1900682.
P. Duan, X. Zhu, M. Liu, Chem. Commun. 2011, 47, 5569-5571;
T. Saito, S. Yagai, Org. Biomol. Chem. 2020, 18, 3996-3999;
N. Kameta, W. Ding, M. Masuda, Bull. Chem. Soc. Jpn. 2021, 94, 1172-1178.
N. Kameta, H. Minamikawa, M. Masuda, Soft Matter 2011, 7, 4539-4561;
H. Cao, P. Duan, X. Zhu, J. Jiang, M. Liu, Chem. Eur. J. 2012, 18, 5546-5550;
M. Gubitosi, L. Travaglini, M. C. di Gregorio, N. V. Pavel, J. V. Tato, S. Sennato, U. Olsson, K. Schillen, L. Galantini, Angew. Chem. Int. Ed. 2015, 54, 7018-7021;
Angew. Chem. 2015, 127, 7124-7127;
J. Gao, Y. Okazaki, E. Pouget, S. Nlate, B. Kauffmann, F. Artzner, T. Buffeteau, R. Oda, Mater. Chem. Front. 2021, 5 3021-3028.
W. Zhang, W. Jin, T. Fukushima, N. Ishii, T. Aida, Angew. Chem. Int. Ed. 2009, 48, 4747-4750;
Angew. Chem. 2009, 121, 4841-4844;
Z. Huang, S.-K. Kang, M. Banno, T. Yamaguchi, D. Lee, C. Seok, E. Yashima, M. Lee, Science 2012, 337, 1521-1526.
Y. Chang, Y. Jiao, H. E. Symons, J.-F. Xu, C. F. J. Faul, X. Zhang, Chem. Soc. Rev. 2019, 48, 989-1003;
G. Ouyang, M. Liu, Mater. Chem. Front. 2020, 4, 155-167.
T. Kato, J. Uchida, T. Ichikawa, B. Soberats, Polym. J. 2018, 50, 149-166.
S. Yagai, Y. Goto, X. Lin, T. Karatsu, A. Kitamura, D. Kuzuhara, H. Yamada, Y. Kikkawa, A. Saeki, S. Seki, Angew. Chem. Int. Ed. 2012, 51, 6643-6647;
Angew. Chem. 2012, 124, 6747-6751.
T. G. Barclay, K. Constantopoulos, J. Matisons, Chem. Rev. 2014, 114, 10217-10291.
N. Kameta, M. Masuda, T. Shimizu, Chem. Eur. J. 2015, 21, 8832-8839.
E. M. S. Castanheira, J. M. G. Martinho, J. Photochem. Photobiol. A 1994, 80, 151-156.
J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718-11940.
E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda, Chem. Rev. 2016, 116, 13752-13990.
L. E. Buerkle, S. J. Rowan, Chem. Soc. Rev. 2012, 41, 6089-6102;
S. Onogi, H. Shigematsu, T. Yoshii, T. Tanida, M. Ikeda, R. Kubota, I. Hamachi, Nat. Chem. 2016, 8, 743-752;
A. Sarkar, R. Sasmal, C. Empereur-mot, D. Bochicchio, S. V. K. Kompella, K. Sharma, S. Dhiman, B. Sundaram, S. S. Agasti, G. M. Pavan, S. J. George, J. Am. Chem. Soc. 2020, 142, 7606-7617.
H.-J. Kim, T. Kim, M. Lee, Acc. Chem. Res. 2011, 44, 72-82;
C. Wang, Z. Wang, X. Zhang, Acc. Chem. Res. 2012, 45, 608-618;
S. Fleming, R. V. Ulijn, Chem. Soc. Rev. 2014, 43, 8150-8177;
E. Krieg, M. M. Bastings, P. Besenius, B. Rybtchinski, Chem. Rev. 2016, 116, 2414-2477;
A. Sikder, S. Chakraborty, P. Rajdev, P. Dey, S. Ghosh, Acc. Chem. Res. 2021, 54, 2670-2682.