Selective neural stimulation methods improve cycling exercise performance after spinal cord injury: a case series.
Cycling
Exercise
Fatigue
Musculoskeletal
Neural stimulation
Paralysis
Spinal cord Injury
Journal
Journal of neuroengineering and rehabilitation
ISSN: 1743-0003
Titre abrégé: J Neuroeng Rehabil
Pays: England
ID NLM: 101232233
Informations de publication
Date de publication:
23 07 2021
23 07 2021
Historique:
received:
10
03
2021
accepted:
15
07
2021
entrez:
24
7
2021
pubmed:
25
7
2021
medline:
26
11
2021
Statut:
epublish
Résumé
Exercise after paralysis can help prevent secondary health complications, but achieving adequate exercise volumes and intensities is difficult with loss of motor control. Existing electrical stimulation-driven cycling systems involve the paralyzed musculature but result in rapid force decline and muscle fatigue, limiting their effectiveness. This study explores the effects of selective stimulation patterns delivered through multi-contact nerve cuff electrodes on functional exercise output, with the goal of increasing work performed and power maintained within each bout of exercise. Three people with spinal cord injury and implanted stimulation systems performed cycling trials using conventional (S-Max), low overlap (S-Low), low duty cycle (C-Max), and/or combined low overlap and low duty cycle (C-Low) stimulation patterns. Outcome measures include total work (W), end power (P At least one selective pattern significantly (p < 0.05) increased W and P Selective stimulation patterns can increase work performed and power sustained by paralyzed muscles prior to fatigue with increased stimulation efficiency. While still effective, low duty cycle patterns can cause inconsistent power outputs each pedal stroke, but this can be managed by utilizing optimized stimulation levels. Increasing work and sustained power each exercise session has the potential to ultimately improve the physiological benefits of stimulation-driven exercise.
Sections du résumé
BACKGROUND
Exercise after paralysis can help prevent secondary health complications, but achieving adequate exercise volumes and intensities is difficult with loss of motor control. Existing electrical stimulation-driven cycling systems involve the paralyzed musculature but result in rapid force decline and muscle fatigue, limiting their effectiveness. This study explores the effects of selective stimulation patterns delivered through multi-contact nerve cuff electrodes on functional exercise output, with the goal of increasing work performed and power maintained within each bout of exercise.
METHODS
Three people with spinal cord injury and implanted stimulation systems performed cycling trials using conventional (S-Max), low overlap (S-Low), low duty cycle (C-Max), and/or combined low overlap and low duty cycle (C-Low) stimulation patterns. Outcome measures include total work (W), end power (P
RESULTS
At least one selective pattern significantly (p < 0.05) increased W and P
CONCLUSIONS
Selective stimulation patterns can increase work performed and power sustained by paralyzed muscles prior to fatigue with increased stimulation efficiency. While still effective, low duty cycle patterns can cause inconsistent power outputs each pedal stroke, but this can be managed by utilizing optimized stimulation levels. Increasing work and sustained power each exercise session has the potential to ultimately improve the physiological benefits of stimulation-driven exercise.
Identifiants
pubmed: 34301286
doi: 10.1186/s12984-021-00912-5
pii: 10.1186/s12984-021-00912-5
pmc: PMC8301730
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
117Subventions
Organisme : NIAMS NIH HHS
ID : T32 AR007505
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB001889
Pays : United States
Organisme : RRD VA
ID : I01 RX001204
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Eur J Transl Myol. 2017 Dec 05;27(4):7120
pubmed: 29299223
IEEE Trans Neural Syst Rehabil Eng. 2002 Dec;10(4):294-303
pubmed: 12611367
Prev Med. 2001 Nov;33(5):503-13
pubmed: 11676593
J Orthop Sports Phys Ther. 2009 Sep;39(9):684-92
pubmed: 19721215
Med Sci Sports Exerc. 2013 Jun;45(6):1131-8
pubmed: 23685444
IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):473-8
pubmed: 18990650
Arch Phys Med Rehabil. 2012 May;93(5):896-904
pubmed: 22541312
Sports Med Open. 2017 Dec;3(1):10
pubmed: 28251597
Eur J Prev Cardiol. 2012 Feb;19(1):73-80
pubmed: 21450618
Spinal Cord. 2007 Jan;45(1):78-85
pubmed: 16636686
J Neuroeng Rehabil. 2013 Feb 27;10:25
pubmed: 23442372
Eur J Transl Myol. 2017 Dec 06;27(4):7087
pubmed: 29299221
Eur J Transl Myol. 2017 Dec 06;27(4):7086
pubmed: 29299220
J Neural Eng. 2010 Apr;7(2):26006
pubmed: 20208125
Am J Phys Med Rehabil. 1996 Jan-Feb;75(1):29-34
pubmed: 8645435
J Neural Eng. 2017 Jun;14(3):036022
pubmed: 28287078
J Appl Physiol (1985). 1985 Mar;58(3):942-7
pubmed: 3980395
Spinal Cord. 2012 Nov;50(11):803-11
pubmed: 22584284
Eur J Clin Invest. 2003 May;33(5):412-9
pubmed: 12713456
Spinal Cord. 2014 Jun;52 Suppl 1:S3-4
pubmed: 24902644
J Neuroeng Rehabil. 2017 Jul 11;14(1):70
pubmed: 28693584
IEEE Trans Neural Syst Rehabil Eng. 2004 Jun;12(2):251-7
pubmed: 15218938
Neuromodulation. 2020 Aug;23(6):754-762
pubmed: 32189421
Am J Physiol. 1991 Aug;261(2 Pt 1):C195-209
pubmed: 1872366
JBMR Plus. 2019 Sep 03;3(9):e10200
pubmed: 31667456
Eur J Transl Myol. 2017 Dec 05;27(4):7189
pubmed: 29299227
Spinal Cord. 1998 Jul;36(7):463-9
pubmed: 9670381
J Neuroeng Rehabil. 2020 Apr 10;17(1):49
pubmed: 32276627
Arch Phys Med Rehabil. 2013 Nov;94(11):2166-73
pubmed: 23816921
IEEE Trans Neural Syst Rehabil Eng. 2002 Sep;10(3):197-203
pubmed: 12503785
Eur J Appl Physiol. 2011 Oct;111(10):2399-407
pubmed: 21870119
Disabil Rehabil. 2019 Jun;41(13):1499-1507
pubmed: 29382235
Ann Biomed Eng. 2003 Jun;31(6):643-52
pubmed: 12797613
Top Spinal Cord Inj Rehabil. 2013 Fall;19(4):324-9
pubmed: 24244097
J Electromyogr Kinesiol. 2010 Dec;20(6):1163-9
pubmed: 20708950
Med Eng Phys. 2001 Jan;23(1):19-28
pubmed: 11344004
World J Orthop. 2015 Jan 18;6(1):24-33
pubmed: 25621208
J Neuroeng Rehabil. 2019 Jan 18;16(1):13
pubmed: 30658656
J Neural Eng. 2013 Oct;10(5):056006
pubmed: 23918148
Spinal Cord. 1997 Feb;35(2):86-91
pubmed: 9044514
J Neurotrauma. 2017 Mar 15;34(6):1129-1140
pubmed: 27824285
Paraplegia. 1986 Aug;24(4):221-30
pubmed: 3489917
IEEE Trans Biomed Eng. 1998 Apr;45(4):463-75
pubmed: 9556963
Science. 1957 Dec 27;126(3287):1345-7
pubmed: 13495469
J Biomed Eng. 1988 Apr;10(2):196-200
pubmed: 3361879
IEEE Trans Biomed Eng. 2020 May;67(5):1397-1408
pubmed: 31449001
J Neuroeng Rehabil. 2020 Jul 14;17(1):95
pubmed: 32664972
IEEE Trans Neural Syst Rehabil Eng. 2019 Dec;27(12):2317-2327
pubmed: 31689196
Eur J Transl Myol. 2017 Dec 05;27(4):7110
pubmed: 29299222