Dietary salt exacerbates intestinal fibrosis in chronic TNBS colitis via fibroblasts activation.
Animals
Colitis
/ chemically induced
Diet
/ adverse effects
Disease Models, Animal
Extracellular Matrix Proteins
/ genetics
Fibroblasts
/ drug effects
Fibrosis
/ complications
Humans
Inflammation
/ chemically induced
Inflammatory Bowel Diseases
/ complications
Intestinal Mucosa
/ drug effects
Intestines
/ pathology
Myofibroblasts
/ drug effects
Rats
Salts
/ adverse effects
Trinitrobenzenesulfonic Acid
/ toxicity
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 07 2021
23 07 2021
Historique:
received:
22
01
2021
accepted:
01
07
2021
entrez:
24
7
2021
pubmed:
25
7
2021
medline:
28
10
2021
Statut:
epublish
Résumé
Intestinal fibrosis is a frequent complication in inflammatory bowel diseases (IBD). It is a challenge to identify environmental factors such as diet that may be driving this risk. Intestinal fibrosis result from accumulation of extracellular matrix (ECM) proteins secreted by myofibroblasts. Factors promoting intestinal fibrosis are unknown, but diet appears to be a critical component in its development. Consumption of salt above nutritional recommendations can exacerbate chronic inflammation. So far, high salt diet (HSD) have not been thoroughly investigated in the context of intestinal fibrosis associated to IBD. In the present study, we analyze the role of dietary salt in TNBS chronic colitis induced in rat, an intestinal fibrosis model, or in human colon fibroblast cells. Here, we have shown that high-salt diet exacerbates undernutrition and promoted ECM-associated proteins in fibroblasts. Taken together, our results suggested that dietary salt can activate intestinal fibroblasts, thereby contributing to exacerbation of intestinal fibrosis. Dietary salt may be considered as a putative environmental factor that drives intestinal fibrosis risk.
Identifiants
pubmed: 34301970
doi: 10.1038/s41598-021-94280-8
pii: 10.1038/s41598-021-94280-8
pmc: PMC8302708
doi:
Substances chimiques
Extracellular Matrix Proteins
0
Salts
0
Trinitrobenzenesulfonic Acid
8T3HQG2ZC4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15055Informations de copyright
© 2021. The Author(s).
Références
Rieder, F. et al. European Crohn’s and colitis organisation topical review on prediction, diagnosis and management of fibrostenosing Crohn’s disease. J. Crohns Colitis 10, 873–885 (2016).
pubmed: 26928961
doi: 10.1093/ecco-jcc/jjw055
Moran, G. W. et al. Phenotypic features of Crohn’s disease associated with failure of medical treatment. Clin. Gastroenterol. Hepatol. 12, 434-442.e1 (2014).
pubmed: 23978351
doi: 10.1016/j.cgh.2013.08.026
Kugathasan, S. et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: A multicentre inception cohort study. Lancet 389, 1710–1718 (2017).
pubmed: 28259484
pmcid: 5719489
doi: 10.1016/S0140-6736(17)30317-3
Rieder, F., Fiocchi, C. & Rogler, G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology 152, 340-350.e6 (2017).
pubmed: 27720839
doi: 10.1053/j.gastro.2016.09.047
Marion-Letellier, R., Savoye, G. & Ghosh, S. IBD In Food We Trust. J. Crohns Colitis 10, 1351–1361 (2016).
pubmed: 27194533
doi: 10.1093/ecco-jcc/jjw106
Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 390, 2769–2778 (2018).
doi: 10.1016/S0140-6736(17)32448-0
Levine, A. et al. Dietary Guidance From the International Organization for the Study of Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 18, 1381–1392 (2020).
pubmed: 32068150
doi: 10.1016/j.cgh.2020.01.046
Principi, M. et al. Differences in dietary habits between patients with inflammatory bowel disease in clinical remission and a healthy population. Ann. Gastroenterol. 31, 469–473 (2018).
pubmed: 29991892
pmcid: 6033751
Brown, I. J., Tzoulaki, I., Candeias, V. & Elliott, P. Salt intakes around the world: implications for public health. Int. J. Epidemiol. 38, 791–813 (2009).
pubmed: 19351697
doi: 10.1093/ije/dyp139
Monteleone, I. et al. Sodium chloride-enriched Diet Enhanced Inflammatory Cytokine Production and Exacerbated Experimental Colitis in Mice. J. Crohns Colitis 11, 237–245 (2017).
pubmed: 27473029
doi: 10.1093/ecco-jcc/jjw139
Aguiar, S. L. F. et al. High-Salt Diet Induces IL-17-Dependent Gut Inflammation and Exacerbates Colitis in Mice. Front. Immunol. 8, 1969 (2017).
pubmed: 29379505
doi: 10.3389/fimmu.2017.01969
Tubbs, A. L., Liu, B., Rogers, T. D., Sartor, R. B. & Miao, E. A. Dietary Salt Exacerbates Experimental Colitis. J. Immunol. 199, 1051–1059 (2017).
pubmed: 28637899
doi: 10.4049/jimmunol.1700356
Emilien Loeuillard, J. B. et al. 2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling. World J. Gastroenterol. 20, 18207–18215 (2014).
pubmed: 25561788
pmcid: 4277958
doi: 10.3748/wjg.v20.i48.18207
Charpentier, C. et al. Dietary n-3 PUFA may attenuate experimental colitis. Mediators Inflamm. 2018, 1 (2018).
doi: 10.1155/2018/8430614
Melchior, C. et al. Magnetic resonance colonography for fibrosis assessment in rats with chronic colitis. PLoS ONE 9, 1 (2014).
doi: 10.1371/journal.pone.0100921
Marion-Letellier, R., Amamou, A., Savoye, G. & Ghosh, S. Inflammatory bowel diseases and food additives: To add fuel on the flames!. Nutrients 11, 1 (2019).
doi: 10.3390/nu11051111
Chen, W., Pilling, D. & Gomer, R. H. Dietary NaCl affects bleomycin-induced lung fibrosis in mice. Exp. Lung Res. 43, 395–406 (2017).
pubmed: 29220597
pmcid: 6004787
doi: 10.1080/01902148.2017.1385110
Aroor, A. R. et al. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc. Diabetol. 16, 1 (2017).
doi: 10.1186/s12933-017-0544-4
Khalili, H. et al. Identification and Characterization of a Novel Association between Dietary Potassium and Risk of Crohn’s Disease and Ulcerative Colitis. Front. Immunol. 7, 554 (2016).
pubmed: 28003811
pmcid: 5141241
doi: 10.3389/fimmu.2016.00554
Miranda, P. M. et al. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome 6, 57 (2018).
pubmed: 29566748
pmcid: 5865374
doi: 10.1186/s40168-018-0433-4
Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).
pubmed: 23467085
pmcid: 3637879
doi: 10.1038/nature11984
Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).
pubmed: 23467095
pmcid: 3746493
doi: 10.1038/nature11868
Salameh, E. et al. Chronic colitis-induced visceral pain is associated with increased anxiety during quiescent phase. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G692–G700 (2019).
pubmed: 30735453
doi: 10.1152/ajpgi.00248.2018
Elliott, P. & Brown, I. Sodium intakes around the world. (2007).
Nguyen, G. C., Du, L., Chong, R. Y. & Jackson, T. D. Hypoalbuminaemia and postoperative outcomes in inflammatory bowel disease: the NSQIP surgical cohort. J. Crohns Colitis 13, 1433–1438 (2019).
pubmed: 31253985
pmcid: 6821313
doi: 10.1093/ecco-jcc/jjz083
Cederholm, T. et al. Diagnostic criteria for malnutrition - An ESPEN Consensus Statement. Clin. Nutr. 34, 335–340 (2015).
pubmed: 25799486
doi: 10.1016/j.clnu.2015.03.001
Forbes, A. et al. ESPEN guideline: Clinical nutrition in inflammatory bowel disease. Clin. Nutr. 36, 321–347 (2017).
pubmed: 28131521
doi: 10.1016/j.clnu.2016.12.027
Wei, Y. et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget 8, 70–82 (2017).
pubmed: 27926535
doi: 10.18632/oncotarget.13783
Sun, K.-H., Chang, Y., Reed, N. I. & Sheppard, D. α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 310, L824-836 (2016).
pubmed: 26944089
pmcid: 4867351
doi: 10.1152/ajplung.00350.2015
Bamias, G. et al. Crohn’s disease-associated mucosal factors regulate the expression of TNF-like cytokine 1A and its receptors in primary subepithelial intestinal myofibroblasts and intestinal epithelial cells. Transl. Res. 180, 118-130.e2 (2017).
pubmed: 27665176
doi: 10.1016/j.trsl.2016.08.007
Meijer, M. J. W. et al. Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn’s disease phenotype. Dig. Liver Dis. 39, 733–739 (2007).
pubmed: 17602907
doi: 10.1016/j.dld.2007.05.010
Garg, P. et al. Matrix metalloproteinase-9-mediated tissue injury overrides the protective effect of matrix metalloproteinase-2 during colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G175-184 (2009).
pubmed: 19171847
pmcid: 2643910
doi: 10.1152/ajpgi.90454.2008
Kinoshita, T. et al. Antifibrotic response of cardiac fibroblasts in hypertensive hearts through enhanced TIMP-1 expression by basic fibroblast growth factor. Cardiovasc. Pathol. 23, 92–100 (2014).
pubmed: 24322055
doi: 10.1016/j.carpath.2013.11.001
Speca, S., Giusti, I., Rieder, F. & Latella, G. Cellular and molecular mechanisms of intestinal fibrosis. World J. Gastroenterol. 18, 3635–3661 (2012).
pubmed: 22851857
pmcid: 3406417
doi: 10.3748/wjg.v18.i28.3635
Riquelme-Guzmán, C., Contreras, O. & Brandan, E. Expression of CTGF/CCN2 in response to LPA is stimulated by fibrotic extracellular matrix via the integrin/FAK axis. Am. J. Physiol. Cell Physiol. 314, C415–C427 (2017).
pubmed: 29351412
doi: 10.1152/ajpcell.00013.2017
Severi, C. et al. Contribution of intestinal smooth muscle to Crohn’s disease fibrogenesis. Eur. J. Histochem. 58, 2457 (2014).
pubmed: 25578979
pmcid: 4289851
Hu, H.-H. et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact. 292, 76–83 (2018).
pubmed: 30017632
doi: 10.1016/j.cbi.2018.07.008
Beddy, D., Mulsow, J., Watson, R. W. G., Fitzpatrick, J. M. & O’Connell, P. R. Expression and regulation of connective tissue growth factor by transforming growth factor beta and tumour necrosis factor alpha in fibroblasts isolated from strictures in patients with Crohn’s disease. Br. J. Surg. 93, 1290–1296 (2006).
pubmed: 16838391
doi: 10.1002/bjs.5431
Speca, S. et al. Novel PPARγ Modulator GED-0507-34 Levo Ameliorates Inflammation-driven Intestinal Fibrosis. Inflamm. Bowel Dis. 22, 279–292 (2016).
pubmed: 26535766
doi: 10.1097/MIB.0000000000000618
Wang, Y. et al. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure. Br. J. Med. Biol. Res. 47, 223–230 (2014).
doi: 10.1590/1414-431X20133554
Cox, N., Pilling, D. & Gomer, R. H. NaCl Potentiates Human Fibrocyte Differentiation. PLoS ONE 7, 5674 (2012).
doi: 10.1371/journal.pone.0045674
Butler, M. J. et al. Aldosterone induces albuminuria via matrix metalloproteinase-dependent damage of the endothelial glycocalyx. Kid. Int. 95, 94–107 (2019).
doi: 10.1016/j.kint.2018.08.024
Lindner, D. et al. Differential Expression of Matrix Metalloproteases in Human Fibroblasts with Different Origins. Biochem. Res. Int. 2012, 1–10 (2012).
doi: 10.1155/2012/875742
Charpentier, C. et al. Magnetic resonance colonography in rats with TNBS-induced colitis: a feasibility and validation study. Inflamm. Bowel Dis. 18, 1940–1949 (2012).
pubmed: 22262626
doi: 10.1002/ibd.22897