An SEIR model with infected immigrants and recovered emigrants.

Basic reproduction number Imported infection Measles Recovered emigrant Stable equilibrium

Journal

Advances in difference equations
ISSN: 1687-1839
Titre abrégé: Adv Differ Equ
Pays: Germany
ID NLM: 101670234

Informations de publication

Date de publication:
2021
Historique:
received: 16 02 2021
accepted: 22 06 2021
entrez: 26 7 2021
pubmed: 27 7 2021
medline: 27 7 2021
Statut: ppublish

Résumé

We present a deterministic SEIR model of the said form. The population in point can be considered as consisting of a local population together with a migrant subpopulation. The migrants come into the local population for a short stay. In particular, the model allows for a constant inflow of individuals into different classes and constant outflow of individuals from the R-class. The system of ordinary differential equations has positive solutions and the infected classes remain above specified threshold levels. The equilibrium points are shown to be asymptotically stable. The utility of the model is demonstrated by way of an application to measles.

Identifiants

pubmed: 34306043
doi: 10.1186/s13662-021-03488-5
pii: 3488
pmc: PMC8283395
doi:

Types de publication

Journal Article

Langues

eng

Pagination

337

Informations de copyright

© The Author(s) 2021.

Déclaration de conflit d'intérêts

Competing interestsThe author declares that he has no competing interests.

Références

Annu Rev Control. 2020;50:432-447
pubmed: 33071595
Clin Infect Dis. 2001 Jun 15;32(12):1732-7
pubmed: 11360216
J Travel Med. 2018 Jan 1;25(1):
pubmed: 30395260
Math Biosci. 2001 Jun;171(2):143-54
pubmed: 11395048
J Math Biol. 2019 Aug;79(3):1015-1028
pubmed: 31127328
Adv Differ Equ. 2020;2020(1):568
pubmed: 33052201
Front Public Health. 2020 May 28;8:230
pubmed: 32574303
BMC Res Notes. 2017 Nov 29;10(1):643
pubmed: 29187239
Chaos Solitons Fractals. 2020 Jun;135:109846
pubmed: 32341628
Math Biosci Eng. 2013 Aug;10(4):1135-57
pubmed: 23906205
Malar J. 2019 Nov 20;18(1):368
pubmed: 31747974
Math Biosci Eng. 2020 Apr 1;17(4):2998-3018
pubmed: 32987513

Auteurs

Peter J Witbooi (PJ)

Department of Mathematics and Applied Mathematics, University of the Western Cape, Robert Sobukwe Rd, Bellville, 7530 South Africa.

Classifications MeSH