Stability and Hopf Bifurcation Analysis of an Epidemic Model with Time Delay.
Journal
Computational and mathematical methods in medicine
ISSN: 1748-6718
Titre abrégé: Comput Math Methods Med
Pays: United States
ID NLM: 101277751
Informations de publication
Date de publication:
2021
2021
Historique:
received:
03
05
2021
accepted:
10
06
2021
entrez:
26
7
2021
pubmed:
27
7
2021
medline:
24
11
2021
Statut:
epublish
Résumé
Epidemic models are normally used to describe the spread of infectious diseases. In this paper, we will discuss an epidemic model with time delay. Firstly, the existence of the positive fixed point is proven; and then, the stability and Hopf bifurcation are investigated by analyzing the distribution of the roots of the associated characteristic equations. Thirdly, the theory of normal form and manifold is used to drive an explicit algorithm for determining the direction of Hopf bifurcation and the stability of the bifurcation periodic solutions. Finally, some simulation results are carried out to validate our theoretic analysis.
Identifiants
pubmed: 34306172
doi: 10.1155/2021/1895764
pmc: PMC8270706
doi:
Types de publication
Journal Article
Retracted Publication
Langues
eng
Sous-ensembles de citation
IM
Pagination
1895764Commentaires et corrections
Type : RetractionIn
Informations de copyright
Copyright © 2021 Yue Zhang et al.
Déclaration de conflit d'intérêts
The authors declare that they have no competing interests.
Références
Appl Math Model. 2021 Jul;95:89-105
pubmed: 33619419
Appl Math Comput. 2021 Sep 1;404:126251
pubmed: 33828346
Math Biosci Eng. 2018 Jun 1;15(3):653-666
pubmed: 30380324
Math Biosci Eng. 2018 Jun 1;15(3):693-715
pubmed: 30380326
Math Biosci. 1990 Oct;101(2):139-53
pubmed: 2134483