Loss of P2Y
P2Y1 receptors
glaucoma
ocular hypertension
purinergic signalling
retina
Journal
British journal of pharmacology
ISSN: 1476-5381
Titre abrégé: Br J Pharmacol
Pays: England
ID NLM: 7502536
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
revised:
22
06
2021
received:
31
03
2021
accepted:
16
07
2021
pubmed:
27
7
2021
medline:
15
12
2021
entrez:
26
7
2021
Statut:
ppublish
Résumé
Glaucoma, the leading cause of blindness, damages the retinal ganglion cells. Elevated intraocular pressure (IOP) is a high-risk factor for glaucoma, so topical hypotensive drugs are usually used for treatment. Because not all patients do not respond adequately to current treatments, there is a need to identify a new molecular target to reduce IOP. Here, we have assessed the role of P2Y1 receptors in mediating elevated IOP. P2Y A single dose of the P2Y Activation of P2Y
Sections du résumé
BACKGROUND AND PURPOSE
Glaucoma, the leading cause of blindness, damages the retinal ganglion cells. Elevated intraocular pressure (IOP) is a high-risk factor for glaucoma, so topical hypotensive drugs are usually used for treatment. Because not all patients do not respond adequately to current treatments, there is a need to identify a new molecular target to reduce IOP. Here, we have assessed the role of P2Y1 receptors in mediating elevated IOP.
EXPERIMENTAL APPROACH
P2Y
KEY RESULTS
A single dose of the P2Y
CONCLUSION AND IMPLICATIONS
Activation of P2Y
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4552-4571Informations de copyright
© 2021 The British Pharmacological Society.
Références
Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Buneman, O. P., Cidlowski, J. A., Christopoulos, A., Davenport, A. P., Fabbro, D., Spedding, M., Striessnig, J., Davies, J. A., & CGTP Collaborators (2019). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and other protein targets. British Journal of Pharmacology, 176, S1-S20. https://doi.org/10.1111/bph.14747
Beckel, J. M., Argall, A. J., Lim, J. C., Xia, J., Lu, W., Coffey, E. E., Macarak, E. J., Shahidullah, M., Delamere, N. A., Zode, G. S., Sheffield, V. C., Shestopalov, V. I., Laties, A. M., & Mitchell, C. H. (2014). Mechanosensitive release of adenosine 5′-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: A mechanism for purinergic involvement in chronic strain. Glia, 62, 1486-1501. https://doi.org/10.1002/glia.22695
Bennett, M. R., Buljan, V., Farnell, L., & Gibson, W. G. (2008). Purinergic junctional transmission and propagation of calcium waves in cultured spinal cord microglial networks. Purinergic Signal, 4, 47-59. https://doi.org/10.1007/s11302-007-9076-9
Chang, B., Smith, R. S., Hawes, N. L., Anderson, M. G., Zabaleta, A., Savinova, O., Roderick, T. H., Heckenlively, J. R., Davisson, M. T., & John, S. W. M. (1999). Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nature Genetics, 21, 405-409. https://doi.org/10.1038/7741
Chen, H., Wei, X., Cho, K. S., Chen, G., Sappington, R., Calkins, D. J., & Chen, D. F. (2011). Optic neuropathy due to microbead-induced elevated intraocular pressure in the mouse. Investigative Ophthalmology & Visual Science, 52, 36-44. https://doi.org/10.1167/iovs.09-5115
Chen, S., Liu, Y., Wang, Y., Chen, Y., & Zhang, X. (2018). ATP level in the aqueous humor of primary open-angle glaucoma. ARVO Annual Meeting Abstract, 59, 3728.
Clair, T., Lee, H. Y., Liotta, L. A., & Stracke, M. L. (1997). Autotaxin is an exoenzyme possessing 5′-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. The Journal of Biological Chemistry, 272, 996-1001. https://doi.org/10.1074/jbc.272.2.996
Cueva Vargas, J. L., Osswald, I. K., Unsain, N., Aurousseau, M. R., Barker, P. A., Bowie, D., & di Polo, A. (2015). Soluble tumor necrosis factor alpha promotes retinal ganglion cell death in glaucoma via calcium-permeable AMPA receptor activation. The Journal of Neuroscience, 35, 12088-12102. https://doi.org/10.1523/JNEUROSCI.1273-15.2015
da Silva, C. G., Specht, A., Wegiel, B., Ferran, C., & Kaczmarek, E. (2009). Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells. Circulation, 119, 871-879. https://doi.org/10.1161/CIRCULATIONAHA.108.764571
Danias, J., Shen, F., Kavalarakis, M., Chen, B., Goldblum, D., Lee, K., Zamora, M. F., Su, Y., Brodie, S. E., Podos, S. M., & Mittag, T. (2006). Characterization of retinal damage in the episcleral vein cauterization rat glaucoma model. Experimental Eye Research, 82, 219-228. https://doi.org/10.1016/j.exer.2005.06.013
Diestelhorst, M., Hinzpeter, B., & Krieglstein, G. K. (1991). The effect of isosorbide-mononitrate eye drops on the human intraocular pressure and aqueous humor dynamics. International Ophthalmology, 15, 259-262. https://doi.org/10.1007/BF00171028
Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., & Zeiher, A. M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 399, 601-605. https://doi.org/10.1038/21224
Doganay, S., Evereklioglu, C., Turkoz, Y., & Er, H. (2002). Decreased nitric oxide production in primary open-angle glaucoma. European Journal of Ophthalmology, 12, 44-48. https://doi.org/10.1177/112067210201200109
Eltzschig, H. K., Sitkovsky, M. V., & Robson, S. C. (2012). Purinergic signaling during inflammation. The New England Journal of Medicine, 367, 2322-2333. https://doi.org/10.1056/NEJMra1205750
Emam, W. A., Zidan, H. E., Abdulhalim, B. E., Dabour, S. A., Ghali, M. A., & Kamal, A. T. (2014). Endothelial nitric oxide synthase polymorphisms and susceptibility to high-tension primary open-angle glaucoma in an Egyptian cohort. Molecular Vision, 20, 804-811.
Fonseca, B., Martinez-Aguila, A., Perez de Lara, M. J., Miras-Portugal, M. T., Gomez-Villafuertes, R., & Pintor, J. (2017). Changes in P2Y purinergic receptor expression in the ciliary body in a murine model of glaucoma. Frontiers in Pharmacology, 8(719), 1-10. https://doi.org/10.3389/fphar.2017.00719
Fortune, B., Cull, G., Reynaud, J., Wang, L., & Burgoyne, C. F. (2015). Relating retinal ganglion cell function and retinal nerve fiber layer (RNFL) Retardance to progressive loss of RNFL thickness and optic nerve axons in experimental glaucoma. Investigative Ophthalmology & Visual Science, 56, 3936-3944. https://doi.org/10.1167/iovs.15-16548
Gomes, P., Srinivas, S. P., Van Driessche, W., Vereecke, J., & Himpens, B. (2005). ATP release through connexin hemichannels in corneal endothelial cells. Investigative Ophthalmology & Visual Science, 46, 1208-1218. https://doi.org/10.1167/iovs.04-1181
Harada, T., Harada, C., Nakamura, K., Quah, H. M., Okumura, A., Namekata, K., Saeki, T., Aihara, M., Yoshida, H., Mitani, A., & Tanaka, K. (2007). The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. The Journal of Clinical Investigation, 117, 1763-1770. https://doi.org/10.1172/JCI30178
Harder, J. M., Williams, P. A., Soto, I., Foxworth, N. E., Fernandes, K. A., Freeburg, N. F., Libby, R. T., & John, S. W. M. (2018). Jnk2 deficiency increases the rate of glaucomatous neurodegeneration in ocular hypertensive DBA/2J mice. Cell Death & Disease, 9(705), 1-9. https://doi.org/10.1038/s41419-018-0705-8
Hare, W. A., WoldeMussie, E., Weinreb, R. N., Ton, H., Ruiz, G., Wijono, M., Feldmann, B., Zangwill, L., & Wheeler, L. (2004). Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, II: Structural measures. Investigative Ophthalmology & Visual Science, 45, 2640-2651. https://doi.org/10.1167/iovs.03-0567
Heijl, A., Leske, M. C., Bengtsson, B., Hyman, L., Bengtsson, B., Hussein, M., & Early Manifest Glaucoma Trial Group. (2002). Reduction of intraocular pressure and glaucoma progression: Results from the early manifest glaucoma trial. Archives of Ophthalmology, 120, 1268-1279. https://doi.org/10.1001/archopht.120.10.1268
Honjo, M., Igarashi, N., Kurano, M., Yatomi, Y., Igarashi, K., Kano, K., Aoki, J., Weinreb, R. N., & Aihara, M. (2018). Autotaxin-lysophosphatidic acid pathway in intraocular pressure regulation and glaucoma subtypes. Investigative Ophthalmology & Visual Science, 59, 693-701. https://doi.org/10.1167/iovs.17-23218
Howell, G. R., Macalinao, D. G., Sousa, G. L., Walden, M., Soto, I., Kneeland, S. C., Barbay, J. M., King, B. L., Marchant, J. K., Hibbs, M., Stevens, B., Barres, B. A., Clark, A. F., Libby, R. T., & John, S. W. M. (2011). Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. The Journal of Clinical Investigation, 121, 1429-1444. https://doi.org/10.1172/JCI44646
Howell, G. R., Soto, I., Ryan, M., Graham, L. C., Smith, R. S., & John, S. W. (2013). Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. Journal of Neuroinflammation, 10(76), 1-8.
Jacobson, K. A., & Civan, M. M. (2016). Ocular purine receptors as drug targets in the eye. Journal of Ocular Pharmacology and Therapeutics, 32, 534-547. https://doi.org/10.1089/jop.2016.0090
Jassim, A. H., Coughlin, L., Harun-Or-Rashid, M., Kang, P. T., Chen, Y. R., & Inman, D. M. (2019). Higher reliance on glycolysis limits glycolytic responsiveness in degenerating glaucomatous optic nerve. Molecular Neurobiology, 56, 7097-7112. https://doi.org/10.1007/s12035-019-1576-4
Kaneko, Y., Ohta, M., Inoue, T., Mizuno, K., Isobe, T., Tanabe, S., & Tanihara, H. (2016). Effects of K-115 (Ripasudil), a novel ROCK inhibitor, on trabecular meshwork and Schlemm's canal endothelial cells. Scientific Reports, 6(19640), 1-9. https://doi.org/10.1038/srep19640
Kasetti, R. B., Maddineni, P., Kiehlbauch, C., Patil, S., Searby, C. C., Levine, B., Sheffield, V. C., & Zode, G. S. (2021). Autophagy stimulation reduces ocular hypertension in a murine glaucoma model via autophagic degradation of mutant myocilin. JCI Insight, 6(e143359), 1-19. https://doi.org/10.1172/jci.insight.143359
Khakh, B. S., & Burnstock, G. (2009). The double life of ATP. Scientific American, 301(6), 84-92.
Koeberle, P. D., & Ball, A. K. (1999). Nitric oxide synthase inhibition delays axonal degeneration and promotes the survival of axotomized retinal ganglion cells. Experimental Neurology, 158, 366-381. https://doi.org/10.1006/exnr.1999.7113
Koizumi, S., Fujishita, K., Tsuda, M., Shigemoto-Mogami, Y., & Inoue, K. (2003). Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proceedings of the National Academy of Sciences of the United States of America, 100, 11023-11028. https://doi.org/10.1073/pnas.1834448100
Kubota, R., Noda, S., Wang, Y., Minoshima, S., Asakawa, S., Kudoh, J., Mashima, Y., Oguchi, Y., & Shimizu, N. (1997). A novel myosin-like protein (myocilin) expressed in the connecting cilium of the photoreceptor: Molecular cloning, tissue expression, and chromosomal mapping. Genomics, 41, 360-369. https://doi.org/10.1006/geno.1997.4682
Leon, C., Hechler, B., Freund, M., Eckly, A., Vial, C., Ohlmann, P., Dierich, A., LeMeur, M., Cazenave, J. P., & Gachet, C. (1999). Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. The Journal of Clinical Investigation, 104, 1731-1737. https://doi.org/10.1172/JCI8399
Li, A., Zhang, X., Zheng, D., Ge, J., Laties, A. M., & Mitchell, C. H. (2011). Sustained elevation of extracellular ATP in aqueous humor from humans with primary chronic angle-closure glaucoma. Experimental Eye Research, 93, 528-533. https://doi.org/10.1016/j.exer.2011.06.020
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611-3616. https://doi.org/10.1111/bph.15178
Liu, B., & Neufeld, A. H. (2001). Nitric oxide synthase-2 in human optic nerve head astrocytes induced by elevated pressure in vitro. Archives of Ophthalmology, 119, 240-245.
Liu, Y., Tang, L., & Chen, B. (2012). Effects of antioxidant gene therapy on retinal neurons and oxidative stress in a model of retinal ischemia/reperfusion. Free Radical Biology & Medicine, 52, 909-915. https://doi.org/10.1016/j.freeradbiomed.2011.12.013
Luna, C., Li, G., Qiu, J., Challa, P., Epstein, D. L., & Gonzalez, P. (2009). Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells. Investigative Ophthalmology & Visual Science, 50, 5805-5810. https://doi.org/10.1167/iovs.09-3796
Markovskaya, A., Crooke, A., Guzman-Aranguez, A. I., Peral, A., Ziganshin, A. U., & Pintor, J. (2008). Hypotensive effect of UDP on intraocular pressure in rabbits. European Journal of Pharmacology, 579, 93-97. https://doi.org/10.1016/j.ejphar.2007.10.040
Martin-Gil, A., de Lara, M. J., Crooke, A., Santano, C., Peral, A., & Pintor, J. (2012). Silencing of P2Y(2) receptors reduces intraocular pressure in New Zealand rabbits. British Journal of Pharmacology, 165, 1163-1172. https://doi.org/10.1111/j.1476-5381.2011.01586.x
Mikolajewicz, N., Mohammed, A., Morris, M., & Komarova, S. V. (2018). Mechanically stimulated ATP release from mammalian cells: Systematic review and meta-analysis. Journal of Cell Science, 131, jcs223354.
Mitchell, C. H., Carre, D. A., McGlinn, A. M., Stone, R. A., & Civan, M. M. (1998). A release mechanism for stored ATP in ocular ciliary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 7174-7178. https://doi.org/10.1073/pnas.95.12.7174
Monemi, S., Spaeth, G., DaSilva, A., Popinchalk, S., Ilitchev, E., Liebmann, J., Ritch, R., Héon, E., Crick, R. P., Child, A., & Sarfarazi, M. (2005). Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Human Molecular Genetics, 14, 725-733. https://doi.org/10.1093/hmg/ddi068
Mundell, S. J., Jones, M. L., Hardy, A. R., Barton, J. F., Beaucourt, S. M., Conley, P. B., & Poole, A. W. (2006). Distinct roles for protein kinase C isoforms in regulating platelet purinergic receptor function. Molecular Pharmacology, 70, 1132-1142. https://doi.org/10.1124/mol.106.023549
Nagano, N., Honjo, M., Kawaguchi, M., Nishimasu, H., Nureki, O., Kano, K., Aoki, J., Komatsu, T., Okabe, T., Kojima, H., Nagano, T., & Aihara, M. (2019). Development of a novel intraocular-pressure-lowering therapy targeting ATX. Biological & Pharmaceutical Bulletin, 42, 1926-1935. https://doi.org/10.1248/bpb.b19-00567
Nakagawa, A., Sakai, O., Tokushige, H., Fujishiro, T., & Aihara, M. (2019). Development and characterization of a new rat ocular hypertension model induced by intracameral injection of conjunctival fibroblasts. Scientific Reports, 9(6593), 1-10. https://doi.org/10.1038/s41598-019-43048-2
Nathanson, J. A. (1992). Nitrovasodilators as a new class of ocular hypotensive agents. The Journal of Pharmacology and Experimental Therapeutics, 260, 956-965. https://jpet.aspetjournals.org/content/260/3/956.long
Nesverova, V., & Tornroth-Horsefield, S. (2019). Phosphorylation-dependent regulation of mammalian Aquaporins. Cell, 8(82), 1-21.
Neufeld, A. H. (1999). Nitric oxide: A potential mediator of retinal ganglion cell damage in glaucoma. Survey of Ophthalmology, 43(Suppl 1), S129-S135. https://doi.org/10.1016/S0039-6257(99)00010-7
Neufeld, A. H. (2004). Pharmacologic neuroprotection with an inhibitor of nitric oxide synthase for the treatment of glaucoma. Brain Research Bulletin, 62, 455-459. https://doi.org/10.1016/j.brainresbull.2003.07.005
Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87, 315-424. https://doi.org/10.1152/physrev.00029.2006
Patel, G., Fury, W., Yang, H., Gomez-Caraballo, M., Bai, Y., Yang, T., Adler, C., Wei, Y., Ni, M., Schmitt, H., Hu, Y., Yancopoulos, G., Stamer, W. D., & Romano, C. (2020). Molecular taxonomy of human ocular outflow tissues defined by single-cell transcriptomics. Proceedings of the National Academy of Sciences of the United States of America, 117, 12856-12867. https://doi.org/10.1073/pnas.2001896117
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biology, 18(7), 1-12. https://doi.org/10.1371/journal.pbio.3000410
Perez de Lara, M. J., Guzman-Aranguez, A., de la Villa, P., Diaz-Hernandez, J. I., Miras-Portugal, M. T., & Pintor, J. (2015). Increased levels of extracellular ATP in glaucomatous retinas: Possible role of the vesicular nucleotide transporter during the development of the pathology. Molecular Vision, 21, 1060-1070.
Polak, K., Luksch, A., Berisha, F., Fuchsjaeger-Mayrl, G., Dallinger, S., & Schmetterer, L. (2007). Altered nitric oxide system in patients with open-angle glaucoma. Archives of Ophthalmology, 125, 494-498. https://doi.org/10.1001/archopht.125.4.494
Reigada, D., Lu, W., Zhang, M., & Mitchell, C. H. (2008). Elevated pressure triggers a physiological release of ATP from the retina: Possible role for pannexin hemichannels. Neuroscience, 157, 396-404. https://doi.org/10.1016/j.neuroscience.2008.08.036
Sarfarazi, M. (1997). Recent advances in molecular genetics of glaucomas. Human Molecular Genetics, 6, 1667-1677. https://doi.org/10.1093/hmg/6.10.1667
Satoh, E., Tsukimoto, M., & Kojima, S. (2011). Involvement of P2Y receptors in the protective effect of ATP towards the cell damage in HaCaT cells exposed to H(2)O(2). The Journal of Toxicological Sciences, 36, 741-750. https://doi.org/10.2131/jts.36.741
Schey, K. L., Wang, Z., Wenke, J. L., & Qi, Y. (2014). Aquaporins in the eye: Expression, function, and roles in ocular disease. Biochimica et Biophysica Acta, 1840, 1513-1523. https://doi.org/10.1016/j.bbagen.2013.10.037
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676-682. https://doi.org/10.1038/nmeth.2019
Schmidl, D., Schmetterer, L., Garhofer, G., & Popa-Cherecheanu, A. (2015). Pharmacotherapy of glaucoma. Journal of Ocular Pharmacology and Therapeutics, 31, 63-77. https://doi.org/10.1089/jop.2014.0067
Schuman, J. S., Erickson, K., & Nathanson, J. A. (1994). Nitrovasodilator effects on intraocular pressure and outflow facility in monkeys. Experimental Eye Research, 58, 99-105. https://doi.org/10.1006/exer.1994.1199
Seki, M., Tanaka, T., Matsuda, H., Togano, T., Hashimoto, K., Ueda, J., Fukuchi, T., & Abe, H. (2005). Topically administered timolol and dorzolamide reduce intraocular pressure and protect retinal ganglion cells in a rat experimental glaucoma model. The British Journal of Ophthalmology, 89, 504-507. https://doi.org/10.1136/bjo.2004.052860
Senatorov, V., Malyukova, I., Fariss, R., Wawrousek, E. F., Swaminathan, S., Sharan, S. K., & Tomarev, S. (2006). Expression of mutated mouse myocilin induces open-angle glaucoma in transgenic mice. The Journal of Neuroscience, 26, 11903-11914. https://doi.org/10.1523/JNEUROSCI.3020-06.2006
Shinozaki, Y., Danjo, Y., & Koizumi, S. (2019). Microglial ROCK is essential for chronic methylmercury-induced neurodegeneration. Journal of Neurochemistry, 151, 64-78. https://doi.org/10.1111/jnc.14817
Shinozaki, Y., Kashiwagi, K., Namekata, K., Takeda, A., Ohno, N., Robaye, B., Harada, T., Iwata, T., & Koizumi, S. (2017). Purinergic dysregulation causes hypertensive glaucoma-like optic neuropathy. JCI Insight, 2(e93456), 1-15. https://doi.org/10.1172/jci.insight.93456
Shinozaki, Y., Koizumi, S., Ishida, S., Sawada, J., Ohno, Y., & Inoue, K. (2005). Cytoprotection against oxidative stress-induced damage of astrocytes by extracellular ATP via P2Y1 receptors. Glia, 49, 288-300. https://doi.org/10.1002/glia.20118
Soto, D., Pintor, J., Peral, A., Gual, A., & Gasull, X. (2005). Effects of dinucleoside polyphosphates on trabecular meshwork cells and aqueous humor outflow facility. The Journal of Pharmacology and Experimental Therapeutics, 314, 1042-1051. https://doi.org/10.1124/jpet.105.085274
Stone, E. M., Fingert, J. H., Alward, W. L., Nguyen, T. D., Polansky, J. R., Sunden, S. L., Nishimura, D., Clark, A. F., Nystuen, A., Nichols, B. E., Mackey, D. A., Ritch, R., Kalenak, J. W., Craven, E. R., & Sheffield, V. C. (1997). Identification of a gene that causes primary open angle glaucoma. Science, 275, 668-670. https://doi.org/10.1126/science.275.5300.668
Taguchi, M., Shinozaki, Y., Kashiwagi, K., Shigetomi, E., Robaye, B., & Koizumi, S. (2015). Muller cell-mediated neurite outgrowth of the retinal ganglion cells via P2Y receptor signals. Journal of Neurochemistry, 136(4), 741-751. https://doi.org/10.1111/jnc.13427
Talley Watts, L., Sprague, S., Zheng, W., Garling, R. J., Jimenez, D., Digicaylioglu, M., & Lechleiter, J. (2013). Purinergic 2Y1 receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model. Journal of Neurotrauma, 30, 55-66. https://doi.org/10.1089/neu.2012.2488
Tielsch, J. M., Sommer, A., Katz, J., Royall, R. M., Quigley, H. A., & Javitt, J. (1991). Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore eye survey. JAMA, 266, 369-374.
Tseng, H. C., Riday, T. T., McKee, C., Braine, C. E., Bomze, H., Barak, I., Marean-Reardon, C., John, S. W. M., Philpot, B. D., & Ehlers, M. D. (2015). Visual impairment in an optineurin mouse model of primary open-angle glaucoma. Neurobiology of Aging, 36, 2201-2212. https://doi.org/10.1016/j.neurobiolaging.2015.02.012
van Zyl, T., Yan, W., McAdams, A., Peng, Y. R., Shekhar, K., Regev, A., Juric, D., & Sanes, J. R. (2020). Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 117, 10339-10349. https://doi.org/10.1073/pnas.2001250117
Wang, M., Hood, D. C., Cho, J. S., Ghadiali, Q., De Moraes, C. G., Zhang, X., Ritch, R., & Liebmann, J. M. (2009). Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Archives of Ophthalmology, 127, 875-881. https://doi.org/10.1001/archophthalmol.2009.145
Wang, S., Lai, X., Deng, Y., & Song, Y. (2020). Correlation between mouse age and human age in anti-tumor research: Significance and method establishment. Life Sciences, 242(117242), 1-7. https://doi.org/10.1016/j.lfs.2019.117242
Williams, P. A., Harder, J. M., Foxworth, N. E., Cardozo, B. H., Cochran, K. E., & John, S. W. M. (2017). Nicotinamide and WLD(S) act together to prevent neurodegeneration in glaucoma. Frontiers in Neuroscience, 11(232), 1-10. https://doi.org/10.3389/fnins.2017.00232
Williams, P. A., Harder, J. M., Foxworth, N. E., Cochran, K. E., Philip, V. M., Porciatti, V., Smithies, O., & John, S. W. M. (2017). Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science, 355, 756-760. https://doi.org/10.1126/science.aal0092
Xia, J., Lim, J. C., Lu, W., Beckel, J. M., Macarak, E. J., Laties, A. M., & Mitchell, C. H. (2012). Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. The Journal of Physiology, 590, 2285-2304. https://doi.org/10.1113/jphysiol.2012.227983
Yamaguchi, Y., Watanabe, T., Hirakata, A., & Hida, T. (2006). Localization and ontogeny of aquaporin-1 and -4 expression in iris and ciliary epithelial cells in rats. Cell and Tissue Research, 325, 101-109. https://doi.org/10.1007/s00441-005-0122-z
Zhang, D., Vetrivel, L., & Verkman, A. S. (2002). Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production. The Journal of General Physiology, 119, 561-569. https://doi.org/10.1085/jgp.20028597
Zhang, J., Li, L., Huang, H., Fang, F., Webber, H. C., Zhuang, P., Liu, L., Dalal, R., Tang, P. H., Mahajan, V. B., & Sun, Y. (2019). Silicone oil-induced ocular hypertension and glaucomatous neurodegeneration in mouse. eLife, 8, e45881. https://doi.org/10.7554/eLife.45881
Zhou, G., & Liu, B. (2010). Single nucleotide polymorphisms of metabolic syndrome-related genes in primary open angle glaucoma. International Journal of Ophthalmology, 3, 36-42. https://doi.org/10.3980/j.issn.2222-3959.2010.01.09
Zimmermann, H., Zebisch, M., & Strater, N. (2012). Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal, 8, 437-502. https://doi.org/10.1007/s11302-012-9309-4