Rational Development of a Metal-Free Bifunctional System for the C-H Activation of Methane: A Density Functional Theory Investigation.

density functional calculations frustrated Lewis pairs main group chemistry methane activation

Journal

Chemphyschem : a European journal of chemical physics and physical chemistry
ISSN: 1439-7641
Titre abrégé: Chemphyschem
Pays: Germany
ID NLM: 100954211

Informations de publication

Date de publication:
05 Oct 2021
Historique:
received: 13 07 2021
pubmed: 27 7 2021
medline: 27 7 2021
entrez: 26 7 2021
Statut: ppublish

Résumé

The activation or heterolytic splitting of methane, a challenging substrate usually restricted to transition metals, has so far proven elusive in experimental frustrated Lewis pair (FLP) chemistry. In this article, we demonstrate, using density functional theory (DFT), that 1-aza-9-boratriptycene is a conceptually simple intramolecular FLP for the activation of methane. Systematic comparison with other FLP systems allows to gain insight into their reactivity with methane. The thermodynamics and kinetics of methane activation are interpreted by referring to the analysis of the natural charges and by employing the distortion-interaction/activation strain (DIAS) model. These showed that the nature of the Lewis base influences the selectivity over the reaction pathway, with N Lewis bases favoring the deprotonation mechanism and P bases the hydride abstraction one. The lower barrier of activation for 1-aza-9-boratriptycene and the higher products stability are due to a better interaction energy than its counterparts, itself due to electrostatic interactions with the methane moiety, favorable orbital overlaps allowed by the side-attack, and space proximity between the B and N atoms.

Identifiants

pubmed: 34309144
doi: 10.1002/cphc.202100527
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1958-1966

Subventions

Organisme : University of Namur
Organisme : Namur Institute of Structured Matter (NISM)
Organisme : Fonds de la Recherche Scientifique-FNRS
Organisme : FRIA
ID : F.4513.18
Organisme : Consortium des Équipements de Calcul Intensif and particularly
Organisme : FNRS-FRFC
Organisme : Walloon Region
Organisme : University of Namur
ID : GEQ U.G006.15
Organisme : University of Namur
ID : U.G018.19
Organisme : University of Namur
ID : 1610468
Organisme : University of Namur
ID : RW/GEQ2016

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

G. N. Lewis, Valence and the Structure of Atoms and Molecules, American Chemical Society, 1923.
 
F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry - Part A: Structure and Mechanisms, 5th ed., Springer, New-York, 2007;
A. Corma, H. Garcia, Chem. Rev. 2003, 103, 4307-4365;
S. E. Denmark, G. L. Beutner, Angew. Chem. Int. Ed. 2008, 47, 1560-1638;
Angew. Chem. 2008, 120, 1584-1663.
 
G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124-1126;
P. A. Chase, G. C. Welch, T. Jurca, D. W. Stephan, Angew. Chem. Int. Ed. 2007, 46, 8050-8053;
Angew. Chem. 2007, 119, 8196-8199;
G. C. Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880-1881;
D. W. Stephan, Org. Biomol. Chem. 2008, 6, 1535-1539;
D. W. Stephan, Science 2016, 354, 1248-1256.
 
D. W. Stephan, G. Erker, Chem. Sci. 2014, 5, 2625-2641;
C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2009, 48, 6643-6646;
Angew. Chem. 2009, 121, 6770-6773;
M. Sajid, A. Klose, B. Birkmann, L. Liang, B. Schirmer, T. Wiegand, H. Eckert, A. J. Lough, R. Fröhlich, C. G. Daniliuc, S. Grimme, D. W. Stephan, G. Kehr, G. Erker, Chem. Sci. 2013, 4, 213-219;
E. Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 9918-9919;
A. J. P. Cardenas, B. J. Culotta, T. H. Warren, S. Grimme, A. Stute, R. Fröhlich, G. Kehr, G. Erker, Angew. Chem. Int. Ed. 2011, 50, 7567-7571;
Angew. Chem. 2011, 123, 7709-7713.
 
T. A. Rokob, A. Hamza, A. Stirling, T. Soós, I. Pápai, Angew. Chem. Int. Ed. 2008, 47, 2435-2438;
Angew. Chem. 2008, 120, 2469-2472;
T. A. Rokob, I. Papai, Top. Curr. Chem. 2013, 332, 157-212;
L. L. Zeonjuk, N. Vankova, A. Mavrandonakis, T. Heine, G.-V. Röschenthaler, J. Eicher, Chem. Eur. J. 2013, 19, 17413-17424;
T. A. Rokob, A. Hamza, I. Papai, J. Am. Chem. Soc. 2009, 131, 10701-10710;
T. Wiegand, H. Eckert, O. Ekkert, R. Fröhlich, G. Kehr, G. Erker, S. Grimme, J. Am. Chem. Soc. 2012, 134, 4236-4249;
L. Greb, S. Tussing, B. Schirmer, P. Oña-Burgos, K. Kaupmees, M. Lõkov, I. Leito, S. Grimme, J. Paradies, Chem. Sci. 2013, 4, 2788;
L. Greb, P. Oña-Burgos, B. Schirmer, S. Grimme, D. W. Stephan, J. Paradies, Angew. Chem. Int. Ed. 2012, 51, 10164-10168;
Angew. Chem. 2012, 124, 10311-10315;
É. Dorkó, B. Kótai, T. Földes, Á. Gyömöre, I. Pápai, T. Soós, J. Organomet. Chem. 2017, 847, 258-262;
G. Erös, K. Nagy, H. Mehdi, I. Pápai, P. Nagy, P. Király, G. Tárkányi, T. Soõs, Chem. Eur. J. 2012, 18, 574-585;
J. J. Cabrera-Trujillo, I. Fernandez, Chemistry 2018, 24, 17823-17831;
N. A. Sitte, M. Bursch, S. Grimme, J. Paradies, J. Am. Chem. Soc. 2019, 141, 159-162;
G. Sharma, P. D. Newman, J. A. Platts, J. Mol. Graphics Modell. 2021, 105, 107846.
J. Lam, K. M. Szkop, E. Mosaferi, D. W. Stephan, Chem. Soc. Rev. 2019, 48, 3592-3612.
 
P. Smith, D. Reay, A. Van Amstel, Methane and Climate Change, Earthscan, London, 2010;
B. Conley, W. J. I. Tenn, K. J. H. Young, S. Ganesh, S. Meier, J. Oxgaard, J. Gonzales, W. A. I. Goddard, R. A. Periana, “Methane functionalization“ in Activation of Small Molecules: Organometallic and Bioinorganic Perspectives (Ed.: W. B. Tolman), Wiley-VCH, Weiheim, 2006;
E. McFarland, Science 2012, 338, 340-342.
 
P. Tang, Q. Zhu, Z. Wu, D. Ma, Energy Environ. Sci. 2014, 7, 2580-2591;
N. J. Gunsalus, A. Koppaka, S. H. Park, S. M. Bischof, B. G. Hashiguchi, R. A. Periana, Chem. Rev. 2017, 117, 8521-8573;
R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science 1998, 280, 560-564;
A. K. Cook, S. D. Schimler, A. J. Matzger, M. S. Sanford, Science 2016, 351, 1421-1424;
K. T. Smith, S. Berritt, M. González-Moreiras, S. Ahn, M. R. Smith, M. H. Baik, D. J. Mindiola, Science 2016, 351, 1424-1427;
S. Ahn, D. Sorsche, S. Berritt, M. R. Gau, D. J. Mindiola, M.-H. Baik, ACS Catal. 2018, 8, 10021-10031.
 
H. Li, L. Zhao, G. Lu, Y. Mo, Z. X. Wang, Phys. Chem. Chem. Phys. 2010, 12, 5268-5275;
G. Lu, L. Zhao, H. Li, F. Huango, Z. X. Wang, Eur. J. Inorg. Chem. 2010, 15, 2254-2260;
G. Ma, Z. H. Li, Phys. Chem. Chem. Phys. 2016, 18, 11539-11549;
S. Frömel, C. G. Daniliuc, C. Bannwarth, S. Grimme, K. Bussmann, G. Kehr, G. Erker, Dalton Trans. 2016, 45, 19230-19233;
N. Villegas-Escobar, A. Toro-Labbé, M. Becerra, M. Real-Enriquez, J. R. Mora, L. Rincon, J. Mol. Model. 2017, 23;
I. Migliaro, T. R. Cundari, J. Chem. Inf. Model. 2020, 60, 4958-4966.
 
A. Ben Saida, A. Chardon, A. Osi, N. Tumanov, J. Wouters, A. I. Adjieufack, B. Champagne, G. Berionni, Angew. Chem. Int. Ed. 2019, 58, 16889-16893;
Angew. Chem. 2019, 131, 17045-17049;
A. Chardon, A. Osi, D. Mahaut, T. H. Doan, N. Tumanov, J. Wouters, L. Fusaro, B. Champagne, G. Berionni, Angew. Chem. Int. Ed. 2020, 59, 12402-12406;
Angew. Chem. 2020, 132, 12502-12506.
W. J. van Zeist, F. M. Bickelhaupt, Org. Biomol. Chem. 2010, 8, 3118-3127.
Y. X. Ma, C. F. Chen, Iptycenes chemistry: From synthesis to applications, Springer-Verlag, Berlin, 2013.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03, Gaussian Inc., Wallingford CT, 2016.
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
 
C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comput. Chem. 1996, 17, 49-56;
P. Pulay, G. Fogarasi, J. Chem. Phys. 1992, 96, 2856-2860;
P. Pulay, G. Fogarasi, F. Pang, J. E. Boggs, J. Am. Chem. Soc. 1979, 101, 2550-2560;
X. Li, M. J. Frisch, J. Chem. Theory Comput. 2006, 2, 835-839.
J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094.
C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Chem. Theory Comput. 2005, 1, 1133-1152.
E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1, Gaussian Inc., Pittsburgh, 2003.
D. Svatunek, K. N. Houk, J. Comput. Chem. 2019, 40, 2509-2515.
 
F. M. Bickelhaupt, K. N. Houk, Angew. Chem. Int. Ed. 2017, 56, 10070-10086;
Angew. Chem. 2017, 129, 10204-10221;
I. Fernandez, F. M. Bickelhaupt, Chem. Soc. Rev. 2014, 43, 4953-4967.
 
D. Yepes, P. Jaque, I. Fernandez, Chem. Eur. J. 2016, 22, 18801-18809;
D. Yepes, P. Jaque, I. Fernandez, Chem. Eur. J. 2018, 24, 8833-8840;
P. Vermeeren, M. T. Doppert, F. M. Bickelhaupt, T. A. Hamlin, Chem. Sci. 2021, 12, 4526-4535.
G. Hammond, J. Am. Chem. Soc. 1955, 77, 334-338.
 
F. Weinhold, C. R. Landis, “Resonance Delocalization Corrections“ in Discovering Chemistry with Natural Bond Orbitals, Wiley, Hoboken, NJ, 2012;
F. Weinhold, C. R. Landis, “1.6 Natural resonance structures and weightings“ in Valency and Bonding - A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, New-York, 2005.
A. Chardon, A. Osi, D. Mahaut, A. B. Saida, G. Berionni, Synlett 2020, 31, 1639-1648.

Auteurs

Damien Mahaut (D)

Department of Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium.

Aurélien Chardon (A)

Department of Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium.

Loïc Mineur (L)

Department of Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium.

Guillaume Berionni (G)

Department of Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium.

Benoît Champagne (B)

Department of Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium.

Classifications MeSH