Rational Development of a Metal-Free Bifunctional System for the C-H Activation of Methane: A Density Functional Theory Investigation.
density functional calculations
frustrated Lewis pairs
main group chemistry
methane activation
Journal
Chemphyschem : a European journal of chemical physics and physical chemistry
ISSN: 1439-7641
Titre abrégé: Chemphyschem
Pays: Germany
ID NLM: 100954211
Informations de publication
Date de publication:
05 Oct 2021
05 Oct 2021
Historique:
received:
13
07
2021
pubmed:
27
7
2021
medline:
27
7
2021
entrez:
26
7
2021
Statut:
ppublish
Résumé
The activation or heterolytic splitting of methane, a challenging substrate usually restricted to transition metals, has so far proven elusive in experimental frustrated Lewis pair (FLP) chemistry. In this article, we demonstrate, using density functional theory (DFT), that 1-aza-9-boratriptycene is a conceptually simple intramolecular FLP for the activation of methane. Systematic comparison with other FLP systems allows to gain insight into their reactivity with methane. The thermodynamics and kinetics of methane activation are interpreted by referring to the analysis of the natural charges and by employing the distortion-interaction/activation strain (DIAS) model. These showed that the nature of the Lewis base influences the selectivity over the reaction pathway, with N Lewis bases favoring the deprotonation mechanism and P bases the hydride abstraction one. The lower barrier of activation for 1-aza-9-boratriptycene and the higher products stability are due to a better interaction energy than its counterparts, itself due to electrostatic interactions with the methane moiety, favorable orbital overlaps allowed by the side-attack, and space proximity between the B and N atoms.
Identifiants
pubmed: 34309144
doi: 10.1002/cphc.202100527
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1958-1966Subventions
Organisme : University of Namur
Organisme : Namur Institute of Structured Matter (NISM)
Organisme : Fonds de la Recherche Scientifique-FNRS
Organisme : FRIA
ID : F.4513.18
Organisme : Consortium des Équipements de Calcul Intensif and particularly
Organisme : FNRS-FRFC
Organisme : Walloon Region
Organisme : University of Namur
ID : GEQ U.G006.15
Organisme : University of Namur
ID : U.G018.19
Organisme : University of Namur
ID : 1610468
Organisme : University of Namur
ID : RW/GEQ2016
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
G. N. Lewis, Valence and the Structure of Atoms and Molecules, American Chemical Society, 1923.
F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry - Part A: Structure and Mechanisms, 5th ed., Springer, New-York, 2007;
A. Corma, H. Garcia, Chem. Rev. 2003, 103, 4307-4365;
S. E. Denmark, G. L. Beutner, Angew. Chem. Int. Ed. 2008, 47, 1560-1638;
Angew. Chem. 2008, 120, 1584-1663.
G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124-1126;
P. A. Chase, G. C. Welch, T. Jurca, D. W. Stephan, Angew. Chem. Int. Ed. 2007, 46, 8050-8053;
Angew. Chem. 2007, 119, 8196-8199;
G. C. Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880-1881;
D. W. Stephan, Org. Biomol. Chem. 2008, 6, 1535-1539;
D. W. Stephan, Science 2016, 354, 1248-1256.
D. W. Stephan, G. Erker, Chem. Sci. 2014, 5, 2625-2641;
C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2009, 48, 6643-6646;
Angew. Chem. 2009, 121, 6770-6773;
M. Sajid, A. Klose, B. Birkmann, L. Liang, B. Schirmer, T. Wiegand, H. Eckert, A. J. Lough, R. Fröhlich, C. G. Daniliuc, S. Grimme, D. W. Stephan, G. Kehr, G. Erker, Chem. Sci. 2013, 4, 213-219;
E. Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 9918-9919;
A. J. P. Cardenas, B. J. Culotta, T. H. Warren, S. Grimme, A. Stute, R. Fröhlich, G. Kehr, G. Erker, Angew. Chem. Int. Ed. 2011, 50, 7567-7571;
Angew. Chem. 2011, 123, 7709-7713.
T. A. Rokob, A. Hamza, A. Stirling, T. Soós, I. Pápai, Angew. Chem. Int. Ed. 2008, 47, 2435-2438;
Angew. Chem. 2008, 120, 2469-2472;
T. A. Rokob, I. Papai, Top. Curr. Chem. 2013, 332, 157-212;
L. L. Zeonjuk, N. Vankova, A. Mavrandonakis, T. Heine, G.-V. Röschenthaler, J. Eicher, Chem. Eur. J. 2013, 19, 17413-17424;
T. A. Rokob, A. Hamza, I. Papai, J. Am. Chem. Soc. 2009, 131, 10701-10710;
T. Wiegand, H. Eckert, O. Ekkert, R. Fröhlich, G. Kehr, G. Erker, S. Grimme, J. Am. Chem. Soc. 2012, 134, 4236-4249;
L. Greb, S. Tussing, B. Schirmer, P. Oña-Burgos, K. Kaupmees, M. Lõkov, I. Leito, S. Grimme, J. Paradies, Chem. Sci. 2013, 4, 2788;
L. Greb, P. Oña-Burgos, B. Schirmer, S. Grimme, D. W. Stephan, J. Paradies, Angew. Chem. Int. Ed. 2012, 51, 10164-10168;
Angew. Chem. 2012, 124, 10311-10315;
É. Dorkó, B. Kótai, T. Földes, Á. Gyömöre, I. Pápai, T. Soós, J. Organomet. Chem. 2017, 847, 258-262;
G. Erös, K. Nagy, H. Mehdi, I. Pápai, P. Nagy, P. Király, G. Tárkányi, T. Soõs, Chem. Eur. J. 2012, 18, 574-585;
J. J. Cabrera-Trujillo, I. Fernandez, Chemistry 2018, 24, 17823-17831;
N. A. Sitte, M. Bursch, S. Grimme, J. Paradies, J. Am. Chem. Soc. 2019, 141, 159-162;
G. Sharma, P. D. Newman, J. A. Platts, J. Mol. Graphics Modell. 2021, 105, 107846.
J. Lam, K. M. Szkop, E. Mosaferi, D. W. Stephan, Chem. Soc. Rev. 2019, 48, 3592-3612.
P. Smith, D. Reay, A. Van Amstel, Methane and Climate Change, Earthscan, London, 2010;
B. Conley, W. J. I. Tenn, K. J. H. Young, S. Ganesh, S. Meier, J. Oxgaard, J. Gonzales, W. A. I. Goddard, R. A. Periana, “Methane functionalization“ in Activation of Small Molecules: Organometallic and Bioinorganic Perspectives (Ed.: W. B. Tolman), Wiley-VCH, Weiheim, 2006;
E. McFarland, Science 2012, 338, 340-342.
P. Tang, Q. Zhu, Z. Wu, D. Ma, Energy Environ. Sci. 2014, 7, 2580-2591;
N. J. Gunsalus, A. Koppaka, S. H. Park, S. M. Bischof, B. G. Hashiguchi, R. A. Periana, Chem. Rev. 2017, 117, 8521-8573;
R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science 1998, 280, 560-564;
A. K. Cook, S. D. Schimler, A. J. Matzger, M. S. Sanford, Science 2016, 351, 1421-1424;
K. T. Smith, S. Berritt, M. González-Moreiras, S. Ahn, M. R. Smith, M. H. Baik, D. J. Mindiola, Science 2016, 351, 1424-1427;
S. Ahn, D. Sorsche, S. Berritt, M. R. Gau, D. J. Mindiola, M.-H. Baik, ACS Catal. 2018, 8, 10021-10031.
H. Li, L. Zhao, G. Lu, Y. Mo, Z. X. Wang, Phys. Chem. Chem. Phys. 2010, 12, 5268-5275;
G. Lu, L. Zhao, H. Li, F. Huango, Z. X. Wang, Eur. J. Inorg. Chem. 2010, 15, 2254-2260;
G. Ma, Z. H. Li, Phys. Chem. Chem. Phys. 2016, 18, 11539-11549;
S. Frömel, C. G. Daniliuc, C. Bannwarth, S. Grimme, K. Bussmann, G. Kehr, G. Erker, Dalton Trans. 2016, 45, 19230-19233;
N. Villegas-Escobar, A. Toro-Labbé, M. Becerra, M. Real-Enriquez, J. R. Mora, L. Rincon, J. Mol. Model. 2017, 23;
I. Migliaro, T. R. Cundari, J. Chem. Inf. Model. 2020, 60, 4958-4966.
A. Ben Saida, A. Chardon, A. Osi, N. Tumanov, J. Wouters, A. I. Adjieufack, B. Champagne, G. Berionni, Angew. Chem. Int. Ed. 2019, 58, 16889-16893;
Angew. Chem. 2019, 131, 17045-17049;
A. Chardon, A. Osi, D. Mahaut, T. H. Doan, N. Tumanov, J. Wouters, L. Fusaro, B. Champagne, G. Berionni, Angew. Chem. Int. Ed. 2020, 59, 12402-12406;
Angew. Chem. 2020, 132, 12502-12506.
W. J. van Zeist, F. M. Bickelhaupt, Org. Biomol. Chem. 2010, 8, 3118-3127.
Y. X. Ma, C. F. Chen, Iptycenes chemistry: From synthesis to applications, Springer-Verlag, Berlin, 2013.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03, Gaussian Inc., Wallingford CT, 2016.
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comput. Chem. 1996, 17, 49-56;
P. Pulay, G. Fogarasi, J. Chem. Phys. 1992, 96, 2856-2860;
P. Pulay, G. Fogarasi, F. Pang, J. E. Boggs, J. Am. Chem. Soc. 1979, 101, 2550-2560;
X. Li, M. J. Frisch, J. Chem. Theory Comput. 2006, 2, 835-839.
J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094.
C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Chem. Theory Comput. 2005, 1, 1133-1152.
E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1, Gaussian Inc., Pittsburgh, 2003.
D. Svatunek, K. N. Houk, J. Comput. Chem. 2019, 40, 2509-2515.
F. M. Bickelhaupt, K. N. Houk, Angew. Chem. Int. Ed. 2017, 56, 10070-10086;
Angew. Chem. 2017, 129, 10204-10221;
I. Fernandez, F. M. Bickelhaupt, Chem. Soc. Rev. 2014, 43, 4953-4967.
D. Yepes, P. Jaque, I. Fernandez, Chem. Eur. J. 2016, 22, 18801-18809;
D. Yepes, P. Jaque, I. Fernandez, Chem. Eur. J. 2018, 24, 8833-8840;
P. Vermeeren, M. T. Doppert, F. M. Bickelhaupt, T. A. Hamlin, Chem. Sci. 2021, 12, 4526-4535.
G. Hammond, J. Am. Chem. Soc. 1955, 77, 334-338.
F. Weinhold, C. R. Landis, “Resonance Delocalization Corrections“ in Discovering Chemistry with Natural Bond Orbitals, Wiley, Hoboken, NJ, 2012;
F. Weinhold, C. R. Landis, “1.6 Natural resonance structures and weightings“ in Valency and Bonding - A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, New-York, 2005.
A. Chardon, A. Osi, D. Mahaut, A. B. Saida, G. Berionni, Synlett 2020, 31, 1639-1648.