A molecular method for biomonitoring of an exotic plant-pest: Leafmining for environmental DNA.

agromyzid biomonitoring environmental DNA invasive species species-specific detection

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
10 2021
Historique:
revised: 12 06 2021
received: 20 03 2020
accepted: 19 07 2021
pubmed: 27 7 2021
medline: 21 10 2021
entrez: 26 7 2021
Statut: ppublish

Résumé

Understanding how invasive species respond to novel environments is limited by a lack of sensitivity and throughput in conventional biomonitoring methods. Arthropods in particular are often difficult to monitor due to their small size, rapid lifecycles, and/or visual similarities with co-occurring species. This is true for the agromyzid leafminer fly, Liriomyza sativae, a global pest of vegetable and nursery industries that has recently established in Australia. A robust method based on environmental DNA (eDNA) was developed exploiting traces of DNA left inside "empty" leaf mines, which are straightforward to collect and persist longer in the environment than the fly. This extends the window of possible diagnosis to at least 28 days after a leaf mine becomes empty. The test allowed for visually indistinguishable leafmining damage caused by L. sativae to be genetically differentiated from that of other flies. Field application resulted in the identification of new local plant hosts for L. sativae, including widely distributed weeds and common garden crops, which has important implications for the pest's ability to spread. Moreover, the test confirmed the presence of a previously unknown population of L. sativae on an island in the Torres Strait. The developed eDNA method is likely to become an important tool for L. sativae and other leafmining species of biosecurity significance, which, historically, have been difficult to detect, diagnose and monitor. More generally, eDNA is emerging as a highly sensitive and labour-efficient surveillance tool for difficult to survey species to improve outcomes for agricultural industries, global health, and the environment.

Identifiants

pubmed: 34309946
doi: 10.1111/mec.16092
doi:

Substances chimiques

DNA, Environmental 0

Banques de données

Dryad
['10.5061/dryad.v9s4mw6wb']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4913-4925

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Abdalla, A., Millist, N., Buetre, B., & Bowen, B. (2012). Benefit-cost analysis of the National Fruit Fly Strategy Action Plan Report. 45.
Andersen, K., Bird, K. L., Rasmussen, M., Haile, J., Breuning-madsen, H., Kjaer, K. H., Orlando, L., Gilbert, M. T. P., & Willerslev, E. (2012). Meta-barcoding of “dirt” DNA from soil reflects vertebrate biodiversity. Molecular Ecology, 21, 1966-1979. https://doi.org/10.1111/j.1365-294X.2011.05261.x
Armstrong, K. F., & Ball, S. L. (2005). DNA barcodes for biosecurity: Invasive species identification. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1813-1823. https://doi.org/10.1098/rstb.2005.1713
Augustin, S., Boonham, N., De Kogel, W. J., Donner, P., Faccoli, M., Lees, D. C., Marini, L., Mori, N., Petrucco Toffolo, E., Quilici, S., Roques, A., Yart, A., & Battisti, A. (2012). A review of pest surveillance techniques for detecting quarantine pests in Europe. EPPO Bulletin, 42, 515-551. https://doi.org/10.1111/epp.2600
Australia A of L Macroptilium atropurpureum (DC.) Urb (2019). http://www.ala.org.au/
Blacket, M. J., Rice, A. D., Semeraro, L., & Malipatil, M. B. (2015). DNA-based identifications reveal multiple introductions of the vegetable leafminer Liriomyza sativae (Diptera: Agromyzidae) into the Torres Strait Islands and Papua New Guinea. Bulletin of Entomological Research, 61, 1-12. https://doi.org/10.1017/S0007485315000383
Bureau of Rural Sciences (2007). Australia - Our natural resources at a glance - 2007. Canberra.
Burns, T., Clemann, N., van Rooyen, A., Scheele, B., Weeks, A., & Driscoll, D. (2020). Environmental DNA sampling in a terrestrial environment: Methods to detect a critically endangered frog and a global pathogen. bioRxiv. https://doi.org/10.1101/2020.03.01.968693
Calvignac-Spencer, S., Merkel, K., Kutzner, N., Kühl, H., Boesch, C., Kappeler, P., Metzger, S., Schubert, G., & Leendertz, F. (2013). Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity. Molecular Ecology, 22, 915-924. https://doi.org/10.1111/mec.12183
Canyon, D., Naumann, I., Speare, R., & Winkel, K. (2011). Environmental and economic costs of invertebrate invasions in Australia. In D., Pimentel (Ed.), Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, (2nd edn, pp. 25-50). CRC Press. https://doi.org/10.1201/b10938-5
Dejean, T., Valentini, A., Miquel, C., Miaud, C. (2012). Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. Journal of Applied Ecology, 49, 953-959. https://doi.org/10.1111/j.1365-2664.2012.02171.x
Derocles, S. A. P., Evans, D. M., Nichols, P. C., Evans, S. A., & Lunt, D. H. (2015). Determining plant-leaf miner-parasitoid interactions: A DNA barcoding approach. PLoS One, 10, e0117872. https://doi.org/10.1371/journal.pone.0117872
Dodd, A. J., Ainsworth, N., Burgman, M. A., & Mccarthy, M. A. (2015). Plant extirpation at the site scale: Implications for eradication programmes. Diversity and Distributions, 21, 151-162. https://doi.org/10.1111/ddi.12262
Dougherty, M. M., Larson, E. R., Renshaw, M. A., Gantz, C., Egan, S., Erickson, D., & Lodge, D. (2016). Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. Journal of Applied Ecology, 53, 722-732. https://doi.org/10.1111/1365-2664.12621
Epanchin-Niell, R. S., & Hastings, A. (2010). Controlling established invaders: Integrating economics and spread dynamics to determine optimal management. Ecology Letters, 13, 528-541. https://doi.org/10.1111/j.1461-0248.2010.01440.x
Fei, S., Morin, R. S., Oswalt, C. M., & Liebhold, A. M. (2019). Biomass losses resulting from insect and disease invasions in US forests. Proceedings of the National Academy of Sciences, 116, 17371-17376. https://doi.org/10.1073/pnas.1820601116
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters, 4, 423-425. https://doi.org/10.1098/rsbl.2008.0118
Fleming, P. J. S., Ballard, G., Reid, N. C. H., & Tracey, J. P. (2017). Invasive species and their impacts on agri-ecosystems: Issues and solutions for restoring ecosystem processes. The Rangeland Journal, 39, 523-535. https://doi.org/10.1071/RJ17046
Floyd, R., Lima, J., deWaard, J., Humble, L., & Hanner, R. (2010). Common goals: Policy implications of DNA barcoding as a protocol for identification of arthropod pests. Biological Invasions, 12, 2947-2954. https://doi.org/10.1007/s10530-010-9709-8
Gambley, C. F., Miles, A. K., Ramsden, M., Doogan, V., Thomas, J., Parmenter, K., & Whittle, P. (2009). The distribution and spread of citrus canker in Emerald, Australia. Australasian Plant Pathology, 38, 547-557.
Garrard, G. E., Bekessy, S. A., McCarthy, M. A., & Wintle, B. A. (2008). When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology, 33, 986-998. https://doi.org/10.1111/j.1442-9993.2008.01869.x
Goldberg, C. S., Strickler, K. M., & Pilliod, D. S. (2015). Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biological Conservation, 183, 1-3. https://doi.org/10.1016/j.biocon.2014.11.040
Hauser, M. (2011). A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Management Science, 67, 1352-1357. https://doi.org/10.1002/ps.2265
Hoffmann, B. D., & Broadhurst, L. M. (2016). The economic cost of managing invasive species in Australia. NeoBiota, 31, 1-18. https://doi.org/10.3897/neobiota.31.6960
Höss, M., Kohn, M., Pääbo, S., Knauer, F., & Schröder, W. (1992). Excrement analysis by PCR. Nature, 359, 199. https://doi.org/10.1038/359199a0
Hulme, P. E. (2016). Trade, transport and trouble: Managing invasive species pathways in an era of globalization. Journal of Applied Ecology, 46, 10-18. https://doi.org/10.1111/j.1365-2664.2008.01600.x
International Plant Protection Convention (2014). National diagnostic protocol for plum pox virus (PPV) plant health diagnostic standards. International Plant Protection Convention.
International Plant Protection Convention (2016). DP 16: Genus Liriomyza. ISPM 27 Diagnostic protocols for regulated pests, p DP 16-33. International Plant Protection Convention.
International Plant Protection Convention (2017). Detection of Liriomyza sativae in Far North Queensland. International Plant Protection Convention.
Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4, 150-157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
Johnson, M. W., Oatman, E. R., Wyman, J. A., & Van Steenwyk, R. A. (1980). A technique for monitoring Liriomyza sativae in fresh market tomatoes. Journal of Economic Entomology, 73, 552-555. https://doi.org/10.1093/jee/73.4.552
Kearney, S. G., Carwardine, J., Reside, A. E., Fisher, D. O., Maron, M., Doherty, T. S., Legge, S., Silcock, J., Woinarski, J. C. Z., Garnett, S. T., Wintle, B. A., & Watson, J. E. M. (2018). The threats to Australia's imperilled species and implications for a national conservation response. Pacific Conservation Biology, 25, 231. https://doi.org/10.1071/PC18024
Klymus, K. E., Merkes, C. M., Allison, M. J., Goldberg, C. S., Helbing, C. C., Hunter, M. E., Jackson, C. A., Lance, R. F., Mangan, A. M., Monroe, E. M., Piaggio, A. J., Stokdyk, J. P., Wilson, C. C., & Richter, C. A. (2019). Reporting the limits of detection and quantification for environmental DNA assays. Environmental DNA, 2, 271-282. https://doi.org/10.1002/edn3.29
Liebhold, A. M., Keitt, T. H., Goel, N., & Bertelsmeier, C. (2020). Scale invariance in the spatial-dynamics of biological invasions. NeoBiota, 62, 269-277. https://doi.org/10.3897/neobiota.62.53213
Lugg, W. H., Griffiths, J., Rooyen, A. R., Weeks, A. R., & Tingley, R. (2018). Optimal survey designs for environmental DNA sampling. Methods in Ecology and Evolution, 9, 1049-1059. https://doi.org/10.1111/2041-210X.12951
Maslo, B., Valentin, R., Leu, K., Kerwin, K., Hamilton, G. C., Bevan, A., Fefferman, N. H., & Fonseca, D. M. (2017). Chirosurveillance: The use of native bats to detect invasive agricultural pests. PLoS One, 12, 1-10. https://doi.org/10.1371/journal.pone.0173321
Moore, J. L., Rout, T. M., Hauser, C. E., Moro, D., Jones, M., Wilcox, C., & Possingham, H. P. (2010). Protecting islands from pest invasion: Optimal allocation of biosecurity resources between quarantine and surveillance. Biological Conservation, 143, 1068-1078. https://doi.org/10.1016/j.biocon.2010.01.019
Nichols, R. V., Cromsigt, J. P. G. M., & Spong, G. (2015). DNA left on browsed twigs uncovers bite-scale resource use patterns in European ungulates. Oecologia, 178, 275-284. https://doi.org/10.1007/s00442-014-3196-z
Piaggio, A. J., Engeman, R. M., Hopken, M. W., Humphrey, J. S., Keacher, K. L., Bruce, W. E., & Avery, M. L. (2014). Detecting an elusive invasive species: A diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Molecular Ecology Resources, 14, 374-380. https://doi.org/10.1111/1755-0998.12180
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Science, 70, 1123-1130. https://doi.org/10.1139/cjfas-2013-0047
Pimentel, D., McNair, S., Janecka, J., Wightman, J., Simmonds, C., O'Connell, C., Wong, E., Russel, L., Zern, J., Aquino, T., & Tsomondo, T. (2001). Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture, Ecosystems & Environment, 84, 1-20. https://doi.org/10.1016/S0167-8809(00)00178-X
Plummer, M. (2003). JAGS: A program for analysis of Bayesian models using Gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing (p. 10). Vienna, Austria.
Powell, D. F. (1981). The eradication campaign against American serpentine leaf miner Liriomyza trifolii at Efford Experimental Horticulture Station Hampshire, England, UK. Plant Pathology, 30, 195-204. https://doi.org/10.1111/j.1365-3059.1981.tb01257.x
Rajan (2006). Surveillance and monitoring for plant parasitic nematodes - A challenge. EPPO Bulletin, 36, 59-64. https://doi.org/10.1111/j.1365-2338.2006.00942.x
Rejmánek, M., & Pitcairn, M. J. (2002). When is eradication of exotic pest plants a realistic goal?. IUCN: The World Conservation Union.
Rodgers, T. W., & Janečka, J. E. (2013). Applications and techniques for non-invasive faecal genetics research in felid conservation. European Journal of Wildlife Research, 59, 1-16. https://doi.org/10.1007/s10344-012-0675-6
Rodgers, T. W., & Mock, K. E. (2015). Drinking water as a source of environmental DNA for the detection of terrestrial wildlife species. Conservation Genetics Resources, 7, 693-696. https://doi.org/10.1007/s12686-015-0478-7
Schneider, J., Valentini, A., Dejean, T., Montarsi, F., Taberlet, P., Glaizot, O., & Fumagalli, L. (2016). Detection of invasive mosquito vectors using environmental DNA (eDNA) from water samples. PLoS One, 11, 1-18. https://doi.org/10.1371/journal.pone.0162493
Schnell, I. B., Thomsen, P. F., Wilkinson, N., Rasmussen, M., Jensen, L. R. D., Willerslev, E., Bertelsen, M. F., & Gilbert, M. T. P. (2012). Screening mammal biodiversity using DNA from leeches. Current Biology, 22, R262-R263. https://doi.org/10.1016/j.cub.2012.02.058
Schubert, G., Stockhausen, M., Hoffmann, C., Merkel, K., Vigilant, L., Leendertz, F. H., & Calvignac-Spencer, S. (2015). Targeted detection of mammalian species using carrion fly-derived DNA. Molecular Ecology Resources, 15, 285-294. https://doi.org/10.1111/1755-0998.12306
Shiao, S. F. (2004). Morphological diagnosis of six Liriomyza species (Diptera: Agromyzidae) of quarantine importance in Taiwan. Applied Entomology and Zoology, 39, 27-39. https://doi.org/10.1303/aez.2004.27
Sigsgaard, E. E., Carl, H., Møller, P. R., & Thomsen, P. F. (2015). Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation, 183, 46-52. https://doi.org/10.1016/j.biocon.2014.11.023
Smart, A. S., Tingley, R., Weeks, A. R., van Rooyen, A. R., & McCarthy, M. A. (2015). Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications, 25, 1944-1952. https://doi.org/10.1890/14-1751.1
Sooda, A., Gunawardana, D., Li, D., & Kumarasinghe, L. (2017). Multiplex real-time PCR assay for the detection of three invasive leafminer species: Liriomyza huidobrensis, L. sativae and L. trifolii (Diptera: Agromyzidae). Austral Entomology, 56, 153-159. https://doi.org/10.1111/aen.12237
Spencer, K. A. (1973). Agromyzidae (Diptera) of economic importance. 9:418. https://doi.org/10.1007/978-94-017-0683-4
Spencer, K. A. (1990). Host specialization in the world Agromyzidae (Diptera). https://doi.org/10.2307/4110790
Thomsen, P. F., Kielgast, J., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., Orlando, L., & Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21, 2565-2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x
Thomsen, P. F., & Sigsgaard, E. E. (2019). Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods. Ecology and Evolution, 9, 1665-1679. https://doi.org/10.1002/ece3.4809
Timmins, S. M., & Braithwaite, H. (2003). Early detection of invasive weeds on islands. IUCN: The World Conservation Union.
Valentin, R. E., Fonseca, D. M., Nielsen, A. L., Leskey, T. C., & Lockwood, J. L. (2018). Early detection of invasive exotic insect infestations using eDNA from crop surfaces. Frontiers in Ecology and the Environment, 16, 265-270. https://doi.org/10.1002/fee.1811
Waits, L. P., & Paetkau, D. (2005). Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. Journal of Wildlife Management, 69, 1419-1433.
Walsh, P. S., Metzger, D. A., & Higuchi, R. (1991). Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10, 506-513. https://doi.org/10.2144/000114018
Williams, C. L., Johnston, J. J., Blejwas, K., & Jaeger, M. M. (2003). A coyote in sheep's clothing: Predator identification from saliva. Wildlife Society Bulletin, 31, 926-932.
Zehnder, G. W., & Trumble, J. T. (1984). Spatial and Deil Activity of Liriomyza species (Diptera: Agromyzidae) in fresh market tomatoes. Environmental Entomology, 13, 1411-1416. https://doi.org/10.1093/ee/13.5.1411

Auteurs

Elia I Pirtle (EI)

Cesar Australia, Parkville, Vic., Australia.

Anthony R van Rooyen (AR)

Cesar Australia, Parkville, Vic., Australia.

James Maino (J)

Cesar Australia, Parkville, Vic., Australia.

Andrew R Weeks (AR)

Cesar Australia, Parkville, Vic., Australia.
School of BioSciences, The University of Melbourne, Melbourne, Vic., Australia.

Paul A Umina (PA)

Cesar Australia, Parkville, Vic., Australia.
School of BioSciences, The University of Melbourne, Melbourne, Vic., Australia.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH