Platelet lysate converts M (IFNγ+LPS) macrophages in CD206
Arginase
/ metabolism
Blood Platelets
/ chemistry
Cell Movement
/ drug effects
Chemokine CXCL10
/ metabolism
Collagen Type I
/ metabolism
Collagen Type III
/ metabolism
Fibroblasts
/ drug effects
Humans
Interferon-gamma
/ pharmacology
Lipopolysaccharides
/ pharmacology
Macrophages
/ drug effects
Mannose Receptor
/ metabolism
Phenotype
Signal Transduction
/ drug effects
T-Lymphocytes
/ cytology
Transforming Growth Factor beta
/ metabolism
TGF-β
fibroblasts
macrophages
platelet lysate
wound healing
Journal
Journal of tissue engineering and regenerative medicine
ISSN: 1932-7005
Titre abrégé: J Tissue Eng Regen Med
Pays: England
ID NLM: 101308490
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
revised:
27
05
2021
received:
22
04
2021
accepted:
28
05
2021
pubmed:
27
7
2021
medline:
28
1
2022
entrez:
26
7
2021
Statut:
ppublish
Résumé
Macrophages, thanks to their extreme plasticity, exert critical roles in wound healing by orchestrating tissue defenses in the early inflammatory phase, and by promoting tissue regeneration and angiogenesis at a later time point. In parallel, platelets release a large number of preformed molecules that could affect immunocyte functions. Platelet-rich plasma and platelet lysate (PL) have been widely used as a therapeutic preside for ulcers, although little is known about the effects of platelet-derived biomolecules on macrophage functions during wound healing. In this study, we analyze the effects of PL on macrophages phenotype and functions. Monocyte-derived macrophages were cultured in the presence of interferon-γ and lipopolysaccharides to induce the M1 polarization and were further exposed to 10% PL. PL treatment reduced CD80, CD86, and PDL-1 and enhanced CD206 and CD200R expression on macrophages analyzed by cytofluorimetry. Additionally, macrophage cultures show reduced TNF-α and CXCL10, while increased arginase protein, PPAR, TGF-β, and VEGF. TGF-β secretion was paralleled by the decrease of NFkB and increase of STAT3, STAT6, and SMAD2 and SMAD4. Supernatants of PL-treated macrophages induced a significant increase of type-I collagen and to a lesser extent of type-III collagen production by fibroblasts. Finally, the supernatant of PL-treated macrophages showed significantly reduced capacity to induce the in vitro migration of T lymphocytes. Our results demonstrate that PL dampens the macrophage secretion of pro-inflammatory cytokines and induces the release of arginase, TGF-β, and VEGF that may affect angiogenesis and tissue regeneration, thus facilitating the wound healing process.
Substances chimiques
Chemokine CXCL10
0
Collagen Type I
0
Collagen Type III
0
Lipopolysaccharides
0
Mannose Receptor
0
Transforming Growth Factor beta
0
Interferon-gamma
82115-62-6
Arginase
EC 3.5.3.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
788-797Subventions
Organisme : Italian Ministry of Health
ID : CUP J86C18001120005
Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Alrdahe, S., Al Sadoun, H., Torbica, T., McKenzie, E. A., Bowling, F. L., Boulton, A. J. M., & Mace, K. A. (2019). Dysregulation of macrophage development and phenotype in diabetic human macrophages can be rescued by Hoxa3 protein transduction. PLoS One, 14, e0223980.
Alves, R., & Grimalt, R. (2018). A review of platelet-rich plasma: History, biology, mechanism of action, and classification. Skin Appendage Disorders, 4, 18-24.
Ando, Y., Oku, T., & Tsuji, T. (2016). Platelet supernatant suppresses LPS-induced nitric oxide production from macrophages accompanied by inhibition of NF-κB signaling and increased arginase-1 expression. PLoS One, 11, e0162208.
Boniakowski, A. E., Kimball, A. S., Jacobs, B. N., Kunkel, S. L., & Gallagher, K. A. (2017). Macrophage-mediated inflammation in normal and diabetic wound healing. Journal of Immunology, 199, 17-24.
Brancato, S. K., & Albina, J. E. (2011). Wound macrophages as key regulators of repair. The American Journal of Pathology, 178, 19-25.
Carbone, T., Nasorri, F., Pennino, D., Eyerich, K., Foerster, S., Cifaldi, L., Behrendt, H., & Cavani, A. (2010). CD56 high CD16 − CD62L − NK cells accumulate in allergic contact dermatitis and contribute to the expression of allergic responses. Journal of Immunology, 184, 1102-1110.
Carestia, A., Mena, H. A., Olexen, C. M., Ortiz Wilczyñski, J. M., Negrotto, S., Errasti, A. E., Jenne, C. N., Carrera Silva, E. A., & Schattner, M. (2019). Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice. Cell Reports, 28, 896-908.e5.
Chiara Barsotti, M., Losi, P., Briganti, E., Sanguinetti, E., Magera, A., Al Kayal, T., Di Stefano, R., & Soldani, G. (2013). Effect of platelet lysate on human cells involved in different phases of wound healing. PLoS One, 8, e84753.
Cipriani, V., Ranzato, E., Balbo, V., Mazzucco, L., Cavaletto, M., & Patrone, M. (2009). Long-term effect of platelet lysate on primary fibroblasts highlighted with a proteomic approach. Journal of Tissue Engineering and Regenerative Medicine, 3, 531-538.
Cossarizza, A., Chang, H.-D., Radbruch, A., Acs, A., Adam, D., Adam-Klages, S., & Zychlinsky, A. (2019). Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 49, 1457-1973.
Davies, L. C., & Taylor, P. R. (2015). Tissue-resident macrophages: Then and now. Immunology, 144, 541-548.
Demidova-Rice, T. N., Wolf, L., Deckenback, J., Hamblin, M. R., & Herman, I. M. (2012). Human platelet-rich plasma- and extracellular matrix-derived peptides promote impaired cutaneous wound healing in vivo. PLoS One, 7, e32146.
Douglas, H. E. (2010). TGF-β in wound healing: A review. Journal of Wound Care, 19, 403-406.
Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 6, 265sr6.
Gailit, J., Clark, R. A. F., & Welch, M. P. (1994). TGF-β1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. Journal of Investigative Dermatology, 103, 221-227.
Gan, J., Liu, C., Li, H., Wang, S., Wang, Z., Kang, Z., Zhang, J., Wang, C., Lv, D., & Dong, L. (2019). Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials, 219, 119340.
Garraud, O., Hamzeh-Cognasse, H., Pozzetto, B., Cavaillon, J.-M., & Cognasse, F. (2013). Bench-to-bedside review: Platelets and active immune functions - new clues for immunopathology? Critical Care, 17, 236.
Gordon, S., & Plűddemann, A. (2013). Tissue macrophage heterogeneity: Issues and prospects. Seminars in Immunopathology, 35, 533-540.
Gudbrandsdottir, S., Hasselbalch, H. C., & Nielsen, C. H. (2013). Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes. The Journal of Immunology, 191, 4059-4067.
Kim, S.-A., Ryu, H.-W., Lee, K.-S., & Cho, J.-W. (2013). Application of platelet-rich plasma accelerates the wound healing process in acute and chronic ulcers through rapid migration and upregulation of cyclin A and CDK4 in HaCaT cells. Molecular Medicine Reports, 7, 476-480.
Liarte, S., Bernabé-García, Á., & Nicolás, F. J. (2020). Role of TGF-β in skin chronic wounds: A keratinocyte perspective. Cells, 9, 306.
Lucas, T., Waisman, A., Ranjan, R., Roes, J., Krieg, T., Müller, W., & Eming, S. A. (2010). Differential roles of macrophages in diverse phases of skin repair. The Journal of Immunology, 184, 3964-3977.
Mancuso, M. E., & Santagostino, E. (2017). Platelets: Much more than bricks in a breached wall. British Journal of Haematology, 178, 209-219.
Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A., & Locati, M. (2013). Macrophage plasticity and polarization in tissue repair and remodelling: Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of Pathology, 229, 176-185.
Mantovani, A., & Garlanda, C. (2013). Platelet-macrophage partnership in innate immunity and inflammation. Nature Immunology, 14, 768-770.
Martinez, F. O., & Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Reports, 6. https://doi.org/10.12703/P6-13
Martinez-Zapata, M. J., Martí-Carvajal, A. J., Solà, I., Expósito, J. A., Bolíbar, I., Rodríguez, L., & Zaror, C. (2016). Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD006899.pub3
Minutti, C. M., Knipper, J. A., Allen, J. E., & Zaiss, D. M. W. (2017). Tissue-specific contribution of macrophages to wound healing. Seminars in Cell & Developmental Biology, 61, 3-11.
Ogle, M. E., Segar, C. E., Sridhar, S., & Botchwey, E. A. (2016). Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Experimental Biology and Medicine, 241, 1084-1097.
Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2019). Wound healing: A cellular perspective. Physiological Reviews, 99, 665-706.
Scopelliti, F., Cattani, C., Dimartino, V., Scarponi, C., Madonna, S., Albanesi, C., & Cavani, A. (2020). Platelet lysate promotes the expansion of T regulatory cells that favours in vitro wound healing by increasing keratinocyte migration and fibroblast production of extracellular matrix components. European Journal of Dermatology: EJD, 30, 3-11.
Sebastiani, S., Albanesi, C., Nasorri, F., Girolomoni, G., & Cavani, A. (2002). Nickel-Speci®c CD4+ and CD8+ T cells display distinct migratory responses to chemokines produced during allergic contact dermatitis. Journal of Investigative Dermatology, 118, 7.
Sergeeva, N. S., Shanskii, Ya. D., Sviridova, I. K., Karalkin, P. A., Kirsanova, V. A., Akhmedova, S. A., & Kaprin, A. D. (2016). Analysis of reparative activity of platelet lysate: Effect on cell monolayer recovery in vitro and skin wound healing in vivo. Bulletin of Experimental Biology and Medicine, 162, 138-145.
Sica, A., & Mantovani, A. (2012). Macrophage plasticity and polarization: In vivo veritas. Journal of Clinical Investigation, 122, 787-795.
Sindrilaru, A., Peters, T., Wieschalka, S., Baican, C., Baican, A., Peter, H., Schatz, S., Qi, Y., Schlecht, A., Weiss, J. M., Wlaschek, M., Sunderkötter, C., & Scharffetter-Kochanek, K. (2011). An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. Journal of Clinical Investigation, 121, 985-997.
Singer, A. J. (1999). Cutaneous wound healing. New England Journal of Medicine, 9.
Zamani, M., Yaghoubi, Y., Movassaghpour, A., Shakouri, K., Mehdizadeh, A., Pishgahi, A., & Yousefi, M. (2019). Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: Are we ready for clinical use? Journal of Cellular Physiology, 234, 17172-17186.