Lateral flow assays for the detection of African swine fever virus antigen are not fit for field diagnosis of wild boar carcasses.

African swine fever virus antigen lateral flow assay point-of-care test sensitivity specificity

Journal

Transboundary and emerging diseases
ISSN: 1865-1682
Titre abrégé: Transbound Emerg Dis
Pays: Germany
ID NLM: 101319538

Informations de publication

Date de publication:
Jul 2022
Historique:
revised: 03 07 2021
received: 28 04 2021
accepted: 18 07 2021
pubmed: 28 7 2021
medline: 22 7 2022
entrez: 27 7 2021
Statut: ppublish

Résumé

African swine fever (ASF) is one of the most important viral diseases of domestic pigs and wild boar. Apart from endemic cycles in Africa, ASF is now continuously spreading in Europe and Asia. As ASF leads to severe but unspecific clinical signs and high lethality, early pathogen detection is of utmost importance. Recently, 'point-of-care' (POC) tests, especially immunochromatographic assays, have been intensively discussed for the use in remote areas but also in the context of on-farm epidemiological investigations and wild boar carcass screening. The later topic was the starting point for our present study. In detail, we evaluated the performance of the commercially available INGEZIM ASFV CROM Ag lateral flow assay (Eurofins Technologies Ingenasa) with selected high-quality reference blood samples, and with blood samples from wild boar carcasses collected under field conditions in Germany. While we observed a sensitivity of roughly 77% in freeze-thawed matrices of close to ideal quality, our approach to simulate field conditions in direct testing of blood samples from carcasses without any modification, resulted in a drastically reduced sensitivity of only 12.5% with the given sample set. Freeze thawing increased the sensitivity to roughly 44% which mirrored the overall sensitivity of 49% in the total data set of wild boar carcass samples. A diagnostic specificity of 100% was observed. In summary, the antigen LFA should not be regarded as a substitute for any OIE listed diagnostic method and has very limited use for carcass testing at the point of care. For optimized LFA antigen tests, the sensitivity with field samples must be significantly increased. An improved sensitivity is seen with freeze-thawed samples, which may indicate problems in the accessibility of ASFV antigen that could be overcome, to a certain extent, with assay modifications.

Identifiants

pubmed: 34312995
doi: 10.1111/tbed.14248
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2344-2348

Informations de copyright

© 2021 The Authors. Transboundary and Emerging Diseases published by Wiley-VCH GmbH.

Références

Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F., & Escribano, J. M.; Ictv Report Consortium (2018). ICTV virus taxonomy profile: Asfarviridae. Journal of General Virology, 99, 613-614. https://doi.org/10.1099/jgv.0.001049
Blome, S., Franzke, K., & Beer, M. (2020). African swine fever - A review of current knowledge. Virus Research, 287, 198099. https://doi.org/10.1016/j.virusres.2020.198099
Busch, F., Haumont, C., Penrith, M. L., Laddomada, A., Dietze, K., Globig, A., Guberti, V., Zani, L., & Depner, K. (2021) Evidence-based african swine fever policies: Do we address virus and host adequately? Frontiers in Veterinary Science, 8, 637487. https://doi.org/10.3389/fvets.2021.637487
Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A., & Stahl, K. (2019). Epidemiological considerations on African swine fever in Europe 2014-2018. Porcine Health Management, 5, 6. https://doi.org/10.1186/s40813-018-0109-2
Dixon, L. K., Stahl, K., Jori, F., Vial, L., & Pfeiffer, D. U. (2020). African swine fever epidemiology and control. Annual Review of Animal Biosciences, 8, 221-246. https://doi.org/10.1146/annurev-animal-021419-083741
EFSA (European Food Safety Authority), Boklund, A., Cay, B., Depner, K., Földi, Z., Guberti, V., Masiulis, M., Miteva, A., More, S., Olsevskis, E., Šatrán, P., Spiridon, M., Stahl, K., Thulke, H.-H., Viltrop, A., Wozniakowski, G., Broglia, A., Cortinas Abrahantes, J., Dhollander, S., Gogin, A., Verdonck, F., Amato, L., Papanikolaou, A., … Gortázar, C. (2018). Scientific report on the epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA Journal, 16(11), 5494, 106 pp. https://doi.org/10.2903/j.efsa.2018.5494
King, D. P., Reid, S. M., Hutchings, G. H., Grierson, S. S., Wilkinson, P. J., Dixon, L. K., Bastos, A. D., & Drew, T. W. (2003). Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods, 107, 53-61. https://doi.org/10.1016/S0166-0934(02)00189-1
Pikalo, J., Deutschmann, P., Fischer, M., Roszyk, H., Beer, M., & Blome, S. (2021). African swine fever laboratory diagnosis - Lessons learned from recent animal trials. Pathogens, 10, 177.
Pikalo, J., Schoder, M. E., Sehl, J., Breithaupt, A., Tignon, M., Cay, A. B., Gager, A. M., Fischer, M., Beer, M., & Blome, S. (2020). The African swine fever virus isolate Belgium 2018/1 shows high virulence in European wild boar. Transboundary and Emerging Diseases, 67, 1654-1659. https://doi.org/10.1111/tbed.13503
Sanchez-Vizcaino, J. M., Mur, L., & Martinez-Lopez, B. (2012). African swine fever: An epidemiological update. Transboundary and Emerging Diseases, 59, 27-35. https://doi.org/10.1111/j.1865-1682.2011.01293.x
Sastre, P., Gallardo, C., Monedero, A., Ruiz, T., Arias, M., Sanz, A., & Rueda, P. (2016). Development of a novel lateral flow assay for detection of African swine fever in blood. BMC Vet Res, 12, 206. https://doi.org/10.1186/s12917-016-0831-4
Sauter-Louis, C., Forth, J. H., Probst, C., Staubach, C., Hlinak, A., Rudovsky, A., Holland, D., Schlieben, P., Göldner, M., Schatz, J., Bock, S., Fischer, M., Schulz, K., Homeier-Bachmann, T., Plagemann, R., Klaaß, U., Marquart, R., Mettenleiter, T. C., Beer, M., … Blome, S. (2021). Joining the club: First detection of African swine fever in wild boar in Germany. Transboundary and Emerging Diseases, 68, 1744-1752. https://doi.org/10.1111/TBED.13890.
Wardley, R. C., & Wilkinson, P. J. (1977). The association of African swine fever virus with blood components of infected pigs. Archives of virology, 55, 327-334.
Zhou, X., Li, N., Luo, Y., Liu, Y., Miao, F., Chen, T., Zhang, S., Cao, P., Li, X., Tian, K., Qiu, H. J., & Hu, R. (2018). Emergence of African swine fever in China, 2018. Transboundary and Emerging Diseases, 65, 1482-1484. https://doi.org/10.1111/tbed.12989

Auteurs

Paul Deutschmann (P)

Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany.

Jutta Pikalo (J)

Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany.

Martin Beer (M)

Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany.

Sandra Blome (S)

Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH