Using hybrid atomic force microscopy and infrared spectroscopy (AFM-IR) to identify chemical components of the hair medulla on the nanoscale.
AFM-IR
hair
macrofibril
medulla
nanoscale IR mapping
vacuole
Journal
Journal of microscopy
ISSN: 1365-2818
Titre abrégé: J Microsc
Pays: England
ID NLM: 0204522
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
revised:
02
07
2021
received:
29
04
2021
accepted:
20
07
2021
pubmed:
28
7
2021
medline:
12
1
2022
entrez:
27
7
2021
Statut:
ppublish
Résumé
Atomic force microscopy integrated with infrared spectroscopy (AFM-IR) has been used to topographically and chemically examine the medulla of human hair fibres with nanometre scale lateral resolution. The mapping of cross-sections of the medulla showed two distinct structural components which were subsequently characterised spectroscopically. One of these components was shown to be closely similar to cortical cell species, consistent with the fibrillar structures found in previous electron microscope (EM) investigations. The other component showed large chemical differences from cortical cells and was assigned to globular vacuole species, also confirming EM observations. Further characterisation of the two components was achieved through spectral deconvolution of the protein Amide-I and -II bands. This showed that the vacuoles have a greater proportion of the most thermodynamically stable conformation, namely the antiparallel β-sheet structures. This chimes with the observed lower cysteine concentration, indicating a lower proportion of restrictive disulphide cross-link bonding. Furthermore, the large α-helix presence within the vacuoles points to a loss of matrix-like material as well as significant intermolecular stabilisation of the protein structures. By analysing the carbonyl stretching region, it was established that the fibrillar, cortical cell-like components showed considerable stabilisation from H-bonding interactions, similar to the cortex, involving amino acid side chains whereas, in contrast, the vacuoles were found to only be stabilised significantly by structural lipids.
Substances chimiques
Lipids
0
Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
189-202Informations de copyright
© 2021 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Références
Robbins, C. R. (2012). Chemical and physical behavior of human hair (5th edn.), Berlin, Heidelberg: Springer-Verlag.
Cena, K., & Clark, J. A. (1978). Thermal insulation of animal coats and human clothing. Physics in Medicine and Biology, 23, 565-591.
Randall, V. A. (2007). Hormonal regulation of hair follicles exhibits a biological paradox. Seminars in Cell & Developmental Biology, 18, 274-285.
Draelos, Z. K. (1995). Cosmetics: An overview. Current Problems in Dermatology, 7, 45-64.
Trüeb, R. M. (2001). The value of hair cosmetics and pharmaceuticals. Dermatology, 202, 275-282.
Miao, M., & Xin, J. H. (2017). Engineering of high-performance textiles. Duxford, UK: Elsevier.
Harrison, S., & Sinclair, R. (2003). Hair colouring, permanent styling and hair structure. Journal of Cosmetic Dermatology, 2, 180-185.
Yang, F. C., Zhang, Y., & Rheinstädter, M. C. (2014). The structure of people's hair. PeerJ, 2014, e619.
Dias, M. F. R. G. (2015). Hair cosmetics: An overview. International Journal of Trichology, 7, 2-15.
Robbins, C. R. (2009). The cell membrane complex: Three related but different cellular cohesion components of mammalian hair fibers. Journal of Cosmetic Science, 60, 437-465.
De Cássia Comis Wagner, R., Kiyohara, P. K., Silveira, M., & Joekes, I. (2007). Electron microscopic observations of human hair medulla. Journal of Microscopy, 226, 54-63.
Wagner, R., & Joekes, I. (2007). Hair medulla morphology and mechanical properties. Journal of Cosmetic Science, 58, 359-368.
Kreplak, L., Briki, F., Duvault, Y., Doucet, J., Merigoux, C., Leroy, F., …Dumas, P. (2001). Profiling lipids across Caucasian and Afro-American hair transverse cuts, using synchrotron infrared microspectrometry. International Journal of Cosmetic Science, 23, 369-374.
Deedrick, D., & Koch, S. (2004). Microscopy of hair part II: A practical guide and manual for animal hairs. Forensic Science Communications, 6, 1-20.
Moorthy T, N., & Roy, J. M. (2015). Study on hair morphology to distinguish the dominant races in Malaysia for forensic investigation. Journal of Forensic Science & Criminology, 3, 403.
Chernova, O. F. (2014). Scanning electron microscopy of the hair medulla of orangutan, chimpanzee, and man. Doklady Biological Sciences, 456, 199-202.
Clement, J. L., Pareux, A. L.e, & Ceccaldi, P. F. (1981). Contribution a L'Etude De La Medulla Des Poils. Annales De Dermatologie Et De Venereologie, 108, 849-857.
Dazzi, A., & Prater, C. B. (2017). AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chemical Reviews, 117, 5146-5173.
Dazzi, A., & Prater, C. B. (2017). AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chemical Reviews, 117, 5146-5173.
Ruggeri, F. S., Marcott, C., Dinarelli, S., Longo, G., Girasole, M., Dietler, G., & Knowles, T. P. J. (2018). Identification of oxidative stress in red blood cells with nanoscale chemical resolution by infrared nanospectroscopy. International Journal of Molecular Sciences, 19, 1-14.
Goussous, S. A., Fellows, A. P., Casford, M. T. L., & Davies, P. B. (2019). A time domain study of surfactin penetrating a phospholipid monolayer at the air-water interface investigated using sum frequency generation spectroscopy, infrared reflection absorption spectroscopy, and AFM-nano infrared microscopy. Biochimica et Biophysica Acta- Biomembranes, 1861, 1568-1578.
Fellows, A. P., Puhan, D., Casford, M. T. L., & Davies, P. B. (2020). Understanding the lubrication mechanism of poly(vinyl alcohol) hydrogels using infrared nanospectroscopy. Journal of Physical Chemistry C, 124, 18091-18101.
Fellows, A. P., Casford, M. T. L., & Davies, P. B. (2020). Infrared nanospectroscopy of air-sensitive biological substrates protected by thin hydrogel films. Biophysical Journal, 119, 1474-1480.
Fellows, A. P., Casford, M. T. L., Davies, P. B., Gibson, J. S., Brewin, J. N., & Rees, D. C. (2021). Nanoscale adhesion profiling and membrane characterisation in sickle cell disease using hybrid atomic force microscopy-IR spectroscopy. Colloids Surfaces B Biointerfaces, 197, 111383. https://doi.org/10.1016/j.colsurfb.2020.111383.
Marcott, C., Lo, M., Kjoller, K., Fiat, F., Baghdadli, N., Balooch, G., & Luengo, G. S. (2014). Localization of human hair structural lipids using nanoscale infrared spectroscopy and imaging. Applied Spectroscopy, 68, 564-569.
Fellows, A. P., Casford, M. T. L., & Davies, P. B. (2020). Nanoscale molecular characterization of hair cuticle cells using integrated atomic force microscopy-infrared laser spectroscopy. Applied Spectroscopy, 74, 1540-1550.
Fellows, A. P., Casford, M. T. L., & Davies, P. B. (2020). Spectral analysis and deconvolution of the amide I band of proteins presenting with high-frequency noise and baseline shifts. Applied Spectroscopy, 74, 597-615.
Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767, 1073-1101.
Yang, H., Yang, S., Kong, J., Dong, A., & Yu, S., Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nature Protocols, https://doi.org/10.1038/nprot.2015.024.
Byler, D. M., & Susi, H. (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 25, 469-487.
Holler, F., Burns, D. H., & Callis, J. B. (1989). Direct use of second derivatives in curve-fitting procedures. Applied Spectroscopy, 43, 877-882.
Bertazzo, A., Biasiolo, M., Costa, C. V. L., Cardin de Stefani, E., & Allegri, G. (2000). Tryptophan in human hair: Correlation with pigmentation. Farmaco, 55, 521-525.
Litvinov, R. I., Faizullin, D. A., Zuev, Y. F., & Weisel, J. W. (2012). The α-helix to β-sheet transition in stretched and compressed hydrated fibrin clots. Biophysical Journal, 103, 1020-1027.
Zhang, G., Senak, L., & Moore, D. J. (2011). Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging. Journal of Biomedical Optics, 16, 056009.
Aisenbrey, C., Kinder, R., Goormaghtigh, E., Ruysschaert, J. M., & Bechinger, B. (2006). Interactions involved in the realignment of membrane-associated helices: An investigation using oriented solid-state NMR and attenuated total reflection Fourier transform infrared spectroscopies. Journal of Biological Chemistry, 281, 7708-7716.
Brasseur, R. (2018). Molecular description of biological membranes by computer aided conformational analysis. Boca Raton, Florida: CRC Press.
Vedantham, G., Sparks, H. G., Sane, S. U., Tzannis, S., & Przybycien, T. M. (2000). A holistic approach for protein secondary structure estimation from infrared spectra in H2O solutions. Analytical Biochemistry, 285, 33-49.
Cai, S., & Singh, B. R. (2004). A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry, 43, 2541-2549.
Combs, J. D., Gonzalez, C. U., & Wang, C. (2016). Surface FTIR techniques to analyze the conformation of proteins/peptides in H2O environment. Journal of Physical Chemistry & Biophysics, 6, 1000202.
Barth, A. (2000). The infrared absorption of amino acid side chains. Progress in Biophysics and Molecular Biology, 74, 141-173.
Barton, P. M. J. (2011). A forensic investigation of single human hair fibres using FTIR-ATR spectroscopy and chemometrics. PhD Thesis, Queensland University of Technology, Brisbane.
Panayiotuo, H. (2004) Vibrational spectroscopy of keratin fibres: A forensic approach. PhD Thesis, Queensland University of Technology, Brisbane.
Epishina, L. V., Slovetskii, V. I., Osipov, V. G., Lebedev, O. V., Khmel'nitskii, L. I., Sevost'yanova, V. V., & Novikova, T. S. (1969). Infrared spectra and the structure of salts of imidazoles. Chemistry of Heterocyclic Compounds, 3, 570-575.
Rao, C. N. R., & Venkataraghavan, R. (1964). Contribution to the infrared spectra of five-membered N- and N,S-heterocyclic compounds. Canadian Journal of Chemistry, 42, 43-49.
Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39, 549-559.
Robbins, C. R. (2012). Chemical Composition of Different Hair Types. Chemical and physical behavior of human hair (pp. 105-176). Berlin, Heidelberg: Springer-Verlag.
Fabian, H., & Mäntele, W. (2006). Infrared Spectroscopy of Proteins. Handbook of vibrational spectroscopy. J. M. Chalmers, and P. R. Griffiths, (Eds.) (pp. 2999-3454). Hoboken, NJ: John Wiley & Sons Ltd.
Fayer, M. D. (2013). Ultrafast infrared vibrational spectroscopy. M. D. Fayer, (Ed.) (pp. 1-33), Boca Raton, Florida: CRC Press.
Kobayashi, K., Granja, J. R., & Ghadiri, M. R. (1995). β-Sheet peptide architecture: Measuring the relative stability of parallel vs. antiparallel β-sheets. Angewandte Chemie, 34, 95-98.
Ishizaki, H., Balaram, P., Nagaraj, R., Venkatachalapathi, Y. V., & Tu, A. T. (1981). Determination of beta-turn conformation by laser Raman spectroscopy. Biophysical Journal, 36, 509-517.
Ball, J. B., Hughes, R. A., Alewood, P. F., & Andrews, P. R. (1993). β-turn topography. Tetrahedron, 49, 3467-3478.
Flett, M. S. C. (1951). The characteristic infra-red frequencies of the carboxylic acid group. Journal of the Chemical Society, 1951, 962-967.
Mihály, J., Deák, R., Szigyártó, I. C., Bóta, A., Beke-Somfai, T., & Varga, Z. (2017). Characterization of extracellular vesicles by IR spectroscopy: Fast and simple classification based on amide and C[sbnd]H stretching vibrations. Biochimica et Biophysica Acta-Biomembranes, 1859, 459-466.
Nie, B., Stutzman, J., & Xie, A. (2005). A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophysical Journal, 88, 2833-2847.
Feughelman, M. (2019). Physical properties of hair. Hair and hair care. D. H. Johnson, (Ed.) (pp. 13-32). New York: Routledge.
Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. New York: W. H. Freeman and Company, p. Section 3.3.
Cruz, C. F., Costa, C., Gomes, A. C., Matamá, T., & Cavaco-Paulo, A. (2016). Human hair and the impact of cosmetic procedures: A review on cleansing and shape-modulating cosmetics. Cosmetics, 3, 26.