An engineered microfluidic blood-brain barrier model to evaluate the anti-metastatic activity of β-boswellic acid.


Journal

Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833

Informations de publication

Date de publication:
Oct 2021
Historique:
revised: 11 07 2021
received: 24 01 2021
accepted: 12 07 2021
pubmed: 28 7 2021
medline: 13 10 2021
entrez: 27 7 2021
Statut: ppublish

Résumé

The development of anti-cancer drugs with the ability to inhibit brain metastasis through the blood-brain barrier (BBB) is substantially limited due to the lack of reliable in vitro models. In this study, the Geltrex-based Transwell and microfluidic BBB models were applied to screen the effect of β-boswellic acid (β-BA) on the metastasis of MDA-MB-231 cells through the BBB in static and dynamic conditions, respectively. The toxicity assay revealed that β-BA deteriorates MDA-MB-231 cells, while β-BA had no detectable toxic effects on human umbilical vein endothelial cells (HUVECs) and astrocytes. Trans-endothelial electrical resistance evaluation showed sustainable barrier integrity upon treatment with β-BA. Vimentin expression in HUVECs, evaluated using western blot, confirmed superior barrier integrity in the presence of β-BA. The obtained results were confirmed using an invasion study with a cell tracker and a scanning electron microscope. β-BA significantly inhibited metastasis by 85%, while cisplatin (Cis), a positive control, inhibited cancer cell migration by 12% under static conditions. Upon applying a dynamic BBB model, it was revealed that β-BA-mediated metastasis inhibition was significantly higher than that mediated by Cis.  In summary, the current study proved the anti-metastatic potential of β-BA in both static and dynamic BBB models.

Sections du résumé

BACKGROUND BACKGROUND
The development of anti-cancer drugs with the ability to inhibit brain metastasis through the blood-brain barrier (BBB) is substantially limited due to the lack of reliable in vitro models.
MAIN METHODS METHODS
In this study, the Geltrex-based Transwell and microfluidic BBB models were applied to screen the effect of β-boswellic acid (β-BA) on the metastasis of MDA-MB-231 cells through the BBB in static and dynamic conditions, respectively.
MAJOR RESULTS RESULTS
The toxicity assay revealed that β-BA deteriorates MDA-MB-231 cells, while β-BA had no detectable toxic effects on human umbilical vein endothelial cells (HUVECs) and astrocytes. Trans-endothelial electrical resistance evaluation showed sustainable barrier integrity upon treatment with β-BA. Vimentin expression in HUVECs, evaluated using western blot, confirmed superior barrier integrity in the presence of β-BA. The obtained results were confirmed using an invasion study with a cell tracker and a scanning electron microscope. β-BA significantly inhibited metastasis by 85%, while cisplatin (Cis), a positive control, inhibited cancer cell migration by 12% under static conditions. Upon applying a dynamic BBB model, it was revealed that β-BA-mediated metastasis inhibition was significantly higher than that mediated by Cis.
CONCLUSIONS AND IMPLICATIONS CONCLUSIONS
 In summary, the current study proved the anti-metastatic potential of β-BA in both static and dynamic BBB models.

Identifiants

pubmed: 34313388
doi: 10.1002/biot.202100044
doi:

Substances chimiques

Triterpenes 0
boswellic acid 631-69-6

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2100044

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331, 1559-1564.
Weigelt, B., Peterse, J. L., & Van't Veer, L. J. (2005). Breast cancer metastasis: markers and models. Nature Reviews Cancer, 5, 591-602.
Kienast, Y., Von Baumgarten, L., Fuhrmann, M., Klinkert, W. E., Goldbrunner, R., Herms, J., & Winkler, F. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16, 116-122.
Arshad, F., Wang, L., Sy, C., Avraham, S., & Avraham, H. K. (2010). Blood-brain barrier integrity and breast cancer metastasis to the brain. Pathology Research International, 2011, 920509-920509.
Tajes, M., Ramos-Fernández, E., Weng-Jiang, X., Bosch-Morato, M., Guivernau, B., Eraso-Pichot, A., Salvador, B., Fernandez-Busquets, X., Roquer, J., & Munoz, F. J. (2014). The blood-brain barrier: structure, function and therapeutic approaches to cross it. Molecular Membrane Biology, 31, 152-167.
Persidsky, Y., Ramirez, S. H., Haorah, J., & Kanmogne, G. D. (2006). Blood-brain barrier: structural components and function under physiologic and pathologic conditions. Journal of Neuroimmune Pharmacology, 1, 223-236.
Abbott, N. J. (2002). Astrocyte-endothelial interactions and blood-brain barrier permeability. Journal of Anatomy, 200, 523-534.
Wuest, D. M., & Lee, K. H. (2012). Optimization of endothelial cell growth in a murine in vitro blood-brain barrier model. Biotechnology Journal, 7, 409-417.
Langley, R. R., Fan, D., Guo, L., Zhang, C., Lin, Q., Brantley, E. C., McCarty, J. H., & Fidler, I. J. (2009). Generation of an immortalized astrocyte cell line from H-2Kb-tsA58 mice to study the role of astrocytes in brain metastasis. International Journal of Oncology, 35, 665-672.
Placone, A. L., Quiñones-Hinojosa, A., Searson, P. C. . The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumor Biology 2016, 37, 61-69.
Klein, A., Schwartz, H., Sagi-Assif, O., Meshel, T., Izraely, S., Ben Menachem, S., Bengaiev, R., Ben-Shmuel, A., Nahmias, C., & Couraud, P. O. (2015). Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. The Journal of Pathology, 236, 116-127.
Kaisar, M. A., Abhyankar, V. V., & Cucullo, L. (2019). In Vitro BBB models: working with static platforms and microfluidic systems, Blood-brain barrier, Springer, pp. 55-70.
Song, Y., Cai, X., Du, D., Dutta, P., & Lin, Y. (2019). Comparison of blood-brain barrier models for in vitro biological analysis: One-cell type vs three-cell type. ACS Applied Bio Materials, 2, 1050-1055.
Chan, C. Y., Huang, P.-H., Guo, F., Ding, X., Kapur, V., Mai, J. D., Yuen, P. K., & Huang, T. J. (2013). Accelerating drug discovery via organs-on-chips. Lab on a Chip, 13, 4697-4710.
Seo, S., Kim, H., Sung, J. H., Choi, N., Lee, K., & Kim, H. N. (2020). Microphysiological systems for recapitulating physiology and function of blood-brain barrier. Biomaterials, 232, 119732.
Brown, T. D., Nowak, M., Bayles, A. V., Prabhakarpandian, B., Karande, P., Lahann, J., Helgeson, M. E., & Mitragotri, S. (2019). A microfluidic model of human brain (μHuB) for assessment of blood brain barrier. Bioengineering & Translational Medicine, 4, e10126.
Liu, Y., Gill, E., Shery & Huang, Y. Y. (2017). Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint. Future Science OA, 3, FSO173.
Stone, N. L., England, T. J., & O'Sullivan, S. E. (2019). A novel transwell blood brain barrier model using primary human cells. Frontiers in Cellular Neuroscience, 13, 230.
Banerjee, J., Shi, Y., & Azevedo, H. S. (2016). In vitro blood-brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug Discovery Today, 21, 1367-1386.
Kleinman, H. K., & Martin, G. R. (2005).Seminars in cancer biology, Elsevier, pp. 378-386.
Ponce, M. L. (2009). Tube formation: an in vitro matrigel angiogenesis assay, Angiogenesis protocols, Springer, pp. 183-188.
Park, B., Prasad, S., Yadav, V., Sung, B., & Aggarwal, B. B. (2011). Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. Plos One, 6, e26943.
Weber, C.-C., Reising, K., Müller, W. E., Schubert-Zsilavecz, M., & Abdel-Tawab, M. (2006). Modulation of Pgp function by boswellic acids. Planta Medica, 72, 507.
Bini Araba, A., Ur Rehman, N., Al-Araimi, A., Al-Hashmi, S., Al-Shidhani, S., Csuk, R., Hussain, H., Al-Harrasi, A., & Zadjali, F. (2019). New derivatives of 11-keto-β-boswellic acid (KBA) induce apoptosis in breast and prostate cancers cells. Natural Product Research, 1-10.
Wang, M., Chen, M., Ding, Y., Zhu, Z., Zhang, Y., Wei, P., Wang, J., Qiao, Y., Li, L., & Li, Y. (2015). Pretreatment with β-boswellic acid improves blood stasis induced endothelial dysfunction: role of eNOS activation. Scientific Reports, 5, 15357.
Rehman, N. U., Khan, A., Al-Harrasi, A., Hussain, H., Wadood, A., Riaz, M., & Al-Abri, Z. (2018). New α-glucosidase inhibitors from the resins of Boswellia species with structure-glucosidase activity and molecular docking studies. Bioorganic Chemistry, 79, 27-33.
Ota, M., & Houghton, P. J. (2008). Boswellic acids with acetylcholinesterase inhibitory properties from frankincense. Natural Product Communications, 3, 1934578×0800300105.
Jamshidi-Adegani, F., Vakilian, S., Rehman, N. U., Al-Broumi, M., Al-Kindi, J., Alam, K., Mozafarinahavandi, P., Hasan, A., Al-Riyami, H., & Hussain, J. (2020). Secondary metabolites from acridocarpus orientalis inhibits 4T1 cells and promotes mesenchymal stem cells (MSCs) proliferation. Molecular Biology Reports, 47, 5421-5430.
Zhang, B., & Radisic, M. (2017). Organ-on-a-chip devices advance to market. Lab on a Chip, 17, 2395-2420.
Ramer, R., Schmied, T., Wagner, C., Haustein, M., & Hinz, B. (2018). The antiangiogenic action of cisplatin on endothelial cells is mediated through the release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells. Oncotarget, 9, 34038.
Hussain, H., Al-Harrasi, A., Csuk, R., Shamraiz, U., Green, I. R., Ahmed, I., Khan, I. A., & Ali, Z. (2017). Therapeutic potential of boswellic acids: a patent review (1990-2015). Expert Opinion on Therapeutic Patents, 27, 81-90.
Khan, M. A., Ali, R., Parveen, R., Najmi, A. K., & Ahmad, S. (2016). Pharmacological evidences for cytotoxic and antitumor properties of Boswellic acids from Boswellia serrata. Journal of Ethnopharmacology, 191, 315-323.
Skovseth, D. K., Küchler, A. M., & Haraldsen, G. (2007). The HUVEC/matrigel assay, Target discovery and validation reviews and protocols, Springer, pp. 253-268.
Ponce, M. L. (2001). In vitro matrigel angiogenesis assays, Angiogenesis protocols, Springer, pp. 205-209.
Wu, P., & Ringeisen, B. (2010). Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication, 2, 014111.
Nieminen, M., Henttinen, T., Merinen, M., Marttila-Ichihara, F., Eriksson, J. E., & Jalkanen, S. (2006). Vimentin function in lymphocyte adhesion and transcellular migration. Nature Cell Biology, 8, 156-162.
Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2, 793-805.
Kurzen, H., Manns, S., Dandekar, G., Schmidt, T., PraÈtzel, S., KraÈling, B. M. (2002). Tightening of endothelial cell contacts: a physiologic response to cocultures with smooth-muscle-like 10T1/2 cells. Journal of Investigative Dermatology, 119, 143-153.
Tietz, S., & Engelhardt, B. (2015). Brain barriers: crosstalk between complex tight junctions and adherens junctions. Journal of Cell Biology, 209, 493-506.
Jørgensen, M. L., Møller, C. K., Rasmussen, L., Boisen, L., Pedersen, H., & Kristensen, P. (2017). An anti vimentin antibody promotes tube formation. Scientific Reports, 7, 1-8.
Bauer, A., Mylroie, H., Thornton, C. C., Calay, D., Birdsey, G. M., Kiprianos, A. P., Wilson, G. K., Soares, M. P., Yin, X., & Mayr, M. (2016). Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis. Scientific Reports, 6, 1-16.
Ahmad, S., Khan, S. A., Kindelin, A., Mohseni, T., Bhatia, K., Hoda, M. N., & Ducruet, A. F. (2019). Acetyl-11-keto-β-boswellic acid (AKBA) attenuates oxidative stress, inflammation, complement activation and cell death in brain endothelial cells following OGD/reperfusion. Neuromolecular Medicine, 21, 505-516.
Lu, Y., Chen, L., Li, L., & Cao, Y. (2020). Exosomes derived from brain metastatic breast cancer cells destroy the blood-brain barrier by carrying lncRNA GS1-600G8. 5. BioMed Research International, 2020.
Deli, M. A., Ábrahám, C. S., Kataoka, Y., & Niwa, M. (2005). Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cellular and Molecular Neurobiology, 25, 59-127.
Mukherjee, T., Squillantea, E., Gillespieb, M., & Shao, J. (2004). Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell. Drug Delivery, 11, 11-18.
Wong, K. H., Chan, J. M., Kamm, R. D., & Tien, J. (2012). Microfluidic models of vascular functions. Annual Review of Biomedical Engineering, 14, 205-230.

Auteurs

Saeid Vakilian (S)

Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.

Khurshid Alam (K)

Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat, Oman.

Juhaina Al-Kindi (J)

Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.

Fatemeh Jamshidi-Adegani (F)

Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.

Najeeb Ur Rehman (NU)

Natural Products Laboratory, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.

Rezvan Tavakoli (R)

Hepatites and HIV Department, Pasteur Institute of Iran, Tehran, Iran.

Khamis Al-Riyami (K)

Natural Products Laboratory, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.

Anwarul Hasan (A)

Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar.

Fahad Zadjali (F)

Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.

Rene Csuk (R)

Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.

Ahmed Al-Harrasi (A)

Natural Products Laboratory, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.

Sulaiman Al-Hashmi (S)

Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH