Methods for the Isolation and Study of Exovesicle DNA from Trypanosomatid Parasites.

DNA Exosome Extracellular vesicles Isolation Leishmania Parasites Trypanosoma Trypanosomatid

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 27 7 2021
pubmed: 28 7 2021
medline: 12 1 2022
Statut: ppublish

Résumé

Extracellular vesicles (EVs) or exovesicles are a heterogeneous group of small cell-derived membranous structures that carry complex cargoes including lipids, proteins, RNA, and DNA. Emerging evidence suggest that EVs secreted by kinetoplastid parasites play a cardinal role in the pathogenesis of diseases they cause, becoming valuable structures for understanding parasite-host interactions. Moreover, the characterization of EVs molecular cargo may provide a new approach to develop alternative tools for diagnosis and therapy of infectious diseases. EVs have a potential use as biomarkers since it contains a repertoire of DNA species that could be detected at different stages of infection by PCR-based assays. Here, we provide a detailed protocol for the isolation of Trypanosoma cruzi-derived EVs and purification of its DNA cargo for subsequent characterization. The methods described here are transferrable to other medically important parasites that are well adapted to grow in vitro and, therefore, suitable volume of EVs-containing supernatants can be obtained.

Identifiants

pubmed: 34313995
doi: 10.1007/978-1-0716-1681-9_16
doi:

Substances chimiques

DNA 9007-49-2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

301-317

Informations de copyright

© 2021. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Yáñez-Mó M, Siljander PRM, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:1–60
Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383
pubmed: 23420871 pmcid: 23420871
Akers JC, Gonda D, Kim R et al (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113:1–11
pubmed: 23456661 pmcid: 5533094
Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289
pubmed: 25288114 pmcid: 25288114
Coakley G, Maizels RM, Buck AH (2015) Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol 31:477–489
pubmed: 26433251 pmcid: 4685040
Montaner S, Galiano A, Trelis M et al (2014) The role of extracellular vesicles in modulating the host immune response during parasitic infections. Front Immunol 5:1–8
Olajide JS, Cai J (2020) Perils and promises of pathogenic protozoan extracellular vesicles. Front Cell Infect Microbiol 10:1–17
Filardy AA, Guimarães-Pinto K, Nunes MP et al (2018) Human kinetoplastid protozoan infections: where are we going next? Front Immunol 9:1–7
de Souza W, Barrias ES (2020) Membrane-bound extracellular vesicles secreted by parasitic protozoa: cellular structures involved in the communication between cells. Parasitol Res 119:2005–2023
pubmed: 32394001
Marcilla A, Martin-Jaular L, Trelis M et al (2014) Extracellular vesicles in parasitic diseases. J Extracell Vesicles 3:25040
pubmed: 25536932
Pérez-Cabezas B, Santarém N, Cecílio P et al (2019) More than just exosomes: distinct Leishmania infantum extracellular products potentiate the establishment of infection. J Extracell Vesicles 8:1–15
Gioseffi A, Hamerly T, Van K et al (2020) Leishmania-infected macrophages release extracellular vesicles that can promote lesion development. Life Sci Alliance 3:e202000742
pubmed: 33122174 pmcid: 7652379
Barbosa FMC, Dupin TV, Dos Santos Toledo M et al (2018) Extracellular vesicles released by Leishmania (Leishmania) amazonensis promote disease progression and induce the production of different cytokines in macrophages and B-1 cells. Front Microbiol 9:1–14
Trocoli Torrecilhas AC, Tonelli RR, Pavanelli WR et al (2009) Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect 11:29–39
pubmed: 19028594
Lovo-Martins MI, Malvezi AD, Zanluqui NG et al (2018) Extracellular vesicles shed by Trypanosoma cruzi potentiate infection and elicit lipid body formation and PGE2 production in murine macrophages. Front Immunol 9:896
pubmed: 29755471 pmcid: 5934475
Silverman JM, Clos J, De’Oliveira CC et al (2010) An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 123:842–852
pubmed: 20159964
Fernandez-Calero T, Garcia-Silva R, Pena A et al (2015) Profiling of small RNA cargo of extracellular vesicles shed by Trypanosoma cruzi reveals a specific extracellular signature. Mol Biochem Parasitol 199:19–28
pubmed: 25795082
de Pablos Torró LM, Moreira LR, Osuna A (2018) Extracellular vesicles in chagas disease: a new passenger for an old disease. Front Microbiol 9:1–11
Szempruch AJ, Sykes SE, Kieft R et al (2016) Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 164:246–257
pubmed: 26771494 pmcid: 4715261
Sidhom K, Obi PO, Saleem A (2020) A review of exosomal isolation methods: is size exclusion chromatography the best option? Int J Mol Sci 21:1–19
Konoshenko MY, Lekchnov EA, Vlassov AV et al (2018) Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int 2018:1–27
Li P, Kaslan M, Lee SH et al (2017) Progress in exosome isolation techniques. Theranostics 7:789–804
pubmed: 28255367 pmcid: 5327650
Spada S, Rudqvist NP, Wennerberg E (2020) Isolation of DNA from exosomes. In: Lorsch J (ed) Methods in enzymology, vol 645. Elsevier Inc, pp 173–183
Théry C, Amigorena S, Raposo G et al (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. In: Current protocols in cell biology, vol 30. Willey Online Library, pp 3.22.1–3.22.29
de Pablos Torró LM, Díaz Lozano IM, Jercic MI et al (2016) The C-terminal region of Trypanosoma cruzi MASPs is antigenic and secreted via exovesicles. Sci Rep 6:1–12
Díaz Lozano IM, de Pablos Torró LM, Longhi SA et al (2017) Immune complexes in chronic Chagas disease patients are formed by exovesicles from Trypanosoma cruzi carrying the conserved MASP N-terminal region. Sci Rep 7:1–14
Ramirez MI, Amorim MG, Gadelha C et al (2018) Technical challenges of working with extracellular vesicles. Nanoscale 10:881–906
pubmed: 29265147
Islam MK, Syed P, Lehtinen L et al (2019) A nanoparticle-based approach for the detection of extracellular vesicles. Sci Rep 9:1–9
Fischer S, Cornils K, Speiseder T et al (2016) Indication of horizontal DNA gene transfer by extracellular vesicles. PLoS One 11:1–22
Ammerman N, Beier-Sexton M, and Azad A (2008) Growth and maintenance of Vero cell lines. In: Current protocols in microbiology, vol 11, appendix 4E. Willey Online Library, p 1–10
Lehrich BM, Liang Y, Khosravi P et al (2018) Fetal bovine serum-derived extracellular vesicles persist within vesicle-depleted culture media. Int J Mol Sci 19(11):1–11
Théry C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1–43
Lázaro-Ibáñez E, Lässer C, Shelke GV et al (2019) DNA analysis of low and high density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology. J Extracell Vesicles 8:1–16
Shaw KJ, Thain L, Docker PT et al (2009) The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths. Anal Chim Acta 652:231–233
pubmed: 19786185

Auteurs

Lina María Orrego (LM)

Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.

Romina Romero (R)

Institute of Biotechnology, University of Granada, Granada, Spain.
Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain.

Antonio Osuna (A)

Institute of Biotechnology, University of Granada, Granada, Spain. aosuna@ugr.es.
Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain. aosuna@ugr.es.

Luis M De Pablos (LM)

Institute of Biotechnology, University of Granada, Granada, Spain. lpablos@ugr.es.
Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain. lpablos@ugr.es.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH