Differential expression of microRNAs associated with neurodegenerative diseases and diabetic nephropathy in protein l-isoaspartyl methyltransferase-deficient mice.


Journal

Cell biology international
ISSN: 1095-8355
Titre abrégé: Cell Biol Int
Pays: England
ID NLM: 9307129

Informations de publication

Date de publication:
Nov 2021
Historique:
revised: 15 07 2021
received: 10 04 2021
accepted: 24 07 2021
pubmed: 28 7 2021
medline: 17 2 2022
entrez: 27 7 2021
Statut: ppublish

Résumé

Protein l-isoaspartyl methyltransferase (PIMT/PCMT1), an enzyme repairing isoaspartate residues in peptides and proteins that result from the spontaneous decomposition of normal l-aspartyl and l-asparaginyl residues during aging, has been revealed to be involved in neurodegenerative diseases (NDDs) and diabetes. However, the molecular mechanisms for a putative association of PIMT dysfunction with these diseases have not been clarified. Our study aimed to identify differentially expressed microRNAs (miRNAs) in the brain and kidneys of PIMT-deficient mice and uncover the epigenetic mechanism of PIMT-involved NDDs and diabetic nephropathy (DN). Differentially expressed miRNAs by sequencing underwent target prediction and enrichment analysis in the brain and kidney of PIMT knockout (KO) mice and age-matched wild-type (WT) littermates. Sequence analysis revealed 40 differentially expressed miRNAs in the PIMT KO mouse brain including 25 upregulated miRNAs and 15 downregulated miRNAs. In the PIMT KO mouse kidney, there were 80 differentially expressed miRNAs including 40 upregulated miRNAs and 40 downregulated miRNAs. Enrichment analysis and a systematic literature review of differentially expressed miRNAs indicated the involvement of PIMT deficiency in the pathogenesis in NDDs and DN. Some overlapped differentially expressed miRNAs between the brain and kidney were quantitatively assessed in the brain, kidney, and serum-derived exosomes, respectively. Despite being preliminary, these results may aid in investigating the pathological hallmarks and identify the potential therapeutic targets and biomarkers for PIMT dysfunction-related NDDs and DN.

Identifiants

pubmed: 34314072
doi: 10.1002/cbin.11679
doi:

Substances chimiques

MicroRNAs 0
Protein D-Aspartate-L-Isoaspartate Methyltransferase EC 2.1.1.77

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2316-2330

Subventions

Organisme : Xinglin Scholar Program of Shanghai University of Traditional Chinese Medicine
Organisme : National Natural Science Foundation of China
ID : 81703831

Informations de copyright

© 2021 International Federation for Cell Biology.

Références

Absalon, S., Kochanek, D. M., Raghavan, V., & Krichevsky, A. M. (2013). MiR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. Journal of Neuroscience, 33(37), 14645-14659. https://doi.org/10.1523/JNEUROSCI.1327-13.2013
Agostini, S., Mancuso, R., Liuzzo, G., Bolognesi, E., Costa, A. S., Bianchi, A., & Clerici, M. (2019). Serum miRNAs expression and SNAP-25 genotype in Alzheimer's disease. Frontiers in Aging Neuroscience, 11, 52https://doi.org/10.3389/fnagi.2019.00052
Ansari, A., Maffioletti, E., Milanesi, E., Marizzoni, M., Frisoni, G. B., Blin, O., Richardson, J. C., Bordet, R., Forloni, G., Gennarelli, M., Bocchio-Chiavetto, L., & PharmaCog, C. (2019). miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer's disease. Neurobiology of Aging, 82, 102-109. https://doi.org/10.1016/j.neurobiolaging.2019.06.005
Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297. https://doi.org/10.1016/s0092-8674(04)00045-5
Boivin, D., Bilodeau, D., & Beliveau, R. (1995). Immunochemical characterization of L-isoaspartyl-protein carboxyl methyltransferase from mammalian tissues. Biochemical Journal, 309(Pt 3), 993-998. https://doi.org/10.1042/bj3090993
Burgos, K., Malenica, I., Metpally, R., Courtright, A., Rakela, B., Beach, T., Shill, H., Adler, C., Sabbagh, M., Villa, S., Tembe, W., Craig, D., & Van Keuren-Jensen, K. (2014). Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology. PLOS One, 9(5), e94839. https://doi.org/10.1371/journal.pone.0094839
Campion, C. G., Sanchez-Ferras, O., & Batchu, S. N. (2017). Potential role of serum and urinary biomarkers in diagnosis and prognosis of diabetic nephropathy. Canadian Journal of Kidney Health and Disease, 4, 2054358117705371. https://doi.org/10.1177/2054358117705371
Catanesi, M., d'Angelo, M., Tupone, M. G., Benedetti, E., Giordano, A., Castelli, V., & Cimini, A. (2020). MicroRNAs dysregulation and mitochondrial dysfunction in neurodegenerative diseases. International Journal of Molecular Sciences, 21(17), 5986. https://doi.org/10.3390/ijms21175986
Chang, F., Zhang, L. H., Xu, W. P., Jing, P., & Zhan, P. Y. (2014). microRNA-9 attenuates amyloidbeta-induced synaptotoxicity by targeting calcium/calmodulin-dependent protein kinase kinase 2. Molecular Medicine Reports, 9(5), 1917-1922. https://doi.org/10.3892/mmr.2014.2013
Chatterjee, T., Das, G., Chatterjee, B. K., Dhar, J., Ghosh, S., & Chakrabarti, P. (2020). The role of isoaspartate in fibrillation and its prevention by protein-L-isoaspartyl methyltransferase. Biochimica et Biophysica Acta, General Subjects, 1864(3), 129500. https://doi.org/10.1016/j.bbagen.2019.129500
Chen, L., Yang, J., Lu, J., Cao, S., Zhao, Q., & Yu, Z. (2018). Identification of aberrant circulating miRNAs in Parkinson's disease plasma samples. Brain and Behavior, 8(4), e00941. https://doi.org/10.1002/brb3.941
Cheng, L., Doecke, J. D., Sharples, R. A., Villemagne, V. L., Fowler, C. J., Rembach, A., Martins, R. N., Rowe, C. C., Macaulay, S. L., Masters, C. L., Hill, A. F., & Australian Imaging, Biomarkers and Lifestyle (AIBL) Research, G. (2015). Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment. Molecular Psychiatry, 20(10), 1188-1196. https://doi.org/10.1038/mp.2014.127
Chu, T., Shu, Y., Qu, Y., Gao, S., & Zhang, L. (2018). miR-26b inhibits total neurite outgrowth, promotes cells apoptosis and downregulates neprilysin in Alzheimer's disease. International Journal of Clinical and Experimental Pathology, 11(7), 3383-3390.
Clarke, S. (2003). Aging as war between chemical and biochemical processes: Protein methylation and the recognition of age-damaged proteins for repair. Ageing Research Reviews, 2(3), 263-285. https://doi.org/10.1016/s1568-1637(03)00011-4
Cogswell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., Kelnar, K., Kemppainen, J., Brown, D., Chen, C., Prinjha, R. K., Richardson, J. C., Saunders, A. M., Roses, A. D., & Richards, C. A. (2008). Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimer's Disease, 14(1), 27-41. https://doi.org/10.3233/jad-2008-14103
Cosín-Tomás, M., Antonell, A., Lladó, A., Alcolea, D., Fortea, J., Ezquerra, M., Lleó, A., Martí, M. J., Pallàs, M., Sanchez-Valle, R., Molinuevo, J. L., Sanfeliu, C., & Kaliman, P. (2017). Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimer's disease: Potential and limitations. Molecular Neurobiology, 54(7), 5550-5562. https://doi.org/10.1007/s12035-016-0088-8
Cox, N. J., Wapelhorst, B., Morrison, V. A., Johnson, L., Pinchuk, L., Spielman, R. S., Todd, J. A., & Concannon, P. (2001). Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. American Journal of Human Genetics, 69(4), 820-830. https://doi.org/10.1086/323501
D'Angelo, S., Trojsi, F., Salvatore, A., Daniele, L., Raimo, M., Galletti, P., & Monsurro, M. R. (2013). Accumulation of altered aspartyl residues in erythrocyte membrane proteins from patients with sporadic amyotrophic lateral sclerosis. Neurochemistry International, 63(6), 626-634. https://doi.org/10.1016/j.neuint.2013.09.006
Dai, S., Ni, W., Patananan, A. N., Clarke, S. G., Karger, B. L., & Zhou, Z. S. (2013). Integrated proteomic analysis of major isoaspartyl-containing proteins in the urine of wild type and protein L-isoaspartate O-methyltransferase-deficient mice. Analytical Chemistry, 85(4), 2423-2430. https://doi.org/10.1021/ac303428h
Delay, C., Calon, F., Mathews, P., & Hebert, S. S. (2011). Alzheimer-specific variants in the 3'UTR of amyloid precursor protein affect microRNA function. Molecular Neurodegeneration, 6, 70. https://doi.org/10.1186/1750-1326-6-70
Desrosiers, R. R., & Fanelus, I. (2011). Damaged proteins bearing L-isoaspartyl residues and aging: A dynamic equilibrium between generation of isomerized forms and repair by PIMT. Curr Aging Sci, 4(1), 8-18.
Dorval, V., Mandemakers, W., Jolivette, F., Coudert, L., Mazroui, R., De Strooper, B., & Hebert, S. S. (2014). Gene and MicroRNA transcriptome analysis of Parkinson's related LRRK2 mouse models. PLOS One, 9(1), e85510. https://doi.org/10.1371/journal.pone.0085510
Díez-Planelles, C., Sánchez-Lozano, P., Crespo, M. C., Gil-Zamorano, J., Ribacoba, R., González, N., Suárez, E., Martínez-Descals, A., Martínez-Camblor, P., Álvarez, V., Martín-Hernández, R., Huerta-Ruíz, I., González-García, I., Cosgaya, J. M., Visioli, F., Dávalos, A., Iglesias-Gutiérrez, E., & Tomás-Zapico, C. (2016). Circulating microRNAs in Huntington's disease: Emerging mediators in metabolic impairment. Pharmacological Research, 108, 102-110. https://doi.org/10.1016/j.phrs.2016.05.005
Farrar, C., Houser, C. R., & Clarke, S. (2005). Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice. Aging Cell, 4(1), 1-12. https://doi.org/10.1111/j.1474-9728.2004.00136.x
Fossati, S., Todd, K., Sotolongo, K., Ghiso, J., & Rostagno, A. (2013). Differential contribution of isoaspartate post-translational modifications to the fibrillization and toxic properties of amyloid beta and the Asn23 Iowa mutation. Biochemical Journal, 456(3), 347-360. https://doi.org/10.1042/BJ20130652
Fu, Y., Zhang, Y., Wang, Z., Wang, L., Wei, X., Zhang, B., Wen, Z., Fang, H., Pang, Q., & Yi, F. (2010). Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. American Journal of Nephrology, 32(6), 581-589. https://doi.org/10.1159/000322105
Gao, B. H., Wu, H., Wang, X., Ji, L. L., & Chen, C. (2020). MiR-30c-5p inhibits high glucose-induced EMT and renal fibrogenesis by down-regulation of JAK1 in diabetic nephropathy. European Review for Medical and Pharmacological Sciences, 24(3), 1338-1349. https://doi.org/10.26355/eurrev_202002_20191
Gomes, C., Cunha, C., Nascimento, F., Ribeiro, J. A., Vaz, A. R., & Brites, D. (2019). Cortical neurotoxic astrocytes with early ALS pathology and miR-146a deficit replicate gliosis markers of symptomatic SOD1G93A mouse model. Molecular Neurobiology, 56(3), 2137-2158. https://doi.org/10.1007/s12035-018-1220-8
Gui, Y., Liu, H., Zhang, L., Lv, W., & Hu, X. (2015). Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget, 6(35), 37043-37053. https://doi.org/10.18632/oncotarget.6158
Guo, J., Cai, Y., Ye, X., Ma, N., Wang, Y., Yu, B., & Wan, J. (2019). MiR-409-5p as a regulator of neurite growth is down regulated in APP/PS1 murine model of Alzheimer's disease. Frontiers in Neuroscience, 13, 1264. https://doi.org/10.3389/fnins.2019.01264
Guo, R., Fan, G., Zhang, J., Wu, C., Du, Y., Ye, H., Li, Z., Wang, L., Zhang, Z., Zhang, L., Zhao, Y., & Lu, Z. (2017). A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer's disease. Journal of Alzheimer's Disease, 60(4), 1365-1377. https://doi.org/10.3233/JAD-170343
Hawley, Z. C. E., Campos-Melo, D., & Strong, M. J. (2019). MiR-105 and miR-9 regulate the mRNA stability of neuronal intermediate filaments. Implications for the pathogenesis of amyotrophic lateral sclerosis (ALS). Brain Research, 1706, 93-100. https://doi.org/10.1016/j.brainres.2018.10.032
Hermeking, H. (2007). p53 enters the microRNA world. Cancer Cell, 12(5), 414-418. https://doi.org/10.1016/j.ccr.2007.10.028
Horst, C. H., Schlemmer, F., de Aguiar Montenegro, N., Domingues, A., Ferreira, G. G., da Silva Ribeiro, C. Y., de Andrade, R. R., Del Bel Guimarães, E., Titze-de-Almeida, S. S., & Titze-de-Almeida, R. (2018). Signature of aberrantly expressed microRNAs in the striatum of rotenone-induced parkinsonian rats. Neurochemical Research, 43(11), 2132-2140. https://doi.org/10.1007/s11064-018-2638-0
Hoye, M. L., Koval, E. D., Wegener, A. J., Hyman, T. S., Yang, C., O'Brien, D. R., Miller, R. L., Cole, T., Schoch, K. M., Shen, T., Kunikata, T., Richard, J. P., Gutmann, D. H., Maragakis, N. J., Kordasiewicz, H. B., Dougherty, J. D., & Miller, T. M. (2017). MicroRNA profiling reveals marker of motor neuron disease in ALS models. Journal of Neuroscience, 37(22), 5574-5586. https://doi.org/10.1523/JNEUROSCI.3582-16.2017
Hoye, M. L., Regan, M. R., Jensen, L. A., Lake, A. M., Reddy, L. V., Vidensky, S., Richard, J. P., Maragakis, N. J., Rothstein, J. D., Dougherty, J. D., & Miller, T. M. (2018). Motor neuron-derived microRNAs cause astrocyte dysfunction in amyotrophic lateral sclerosis. Brain, 141(9), 2561-2575. https://doi.org/10.1093/brain/awy182
Hu, Y. K., Wang, X., Li, L., Du, Y. H., Ye, H. T., & Li, C. Y. (2013). MicroRNA-98 induces an Alzheimer's disease-like disturbance by targeting insulin-like growth factor 1. Neuroscience Bulletin, 29(6), 745-751. https://doi.org/10.1007/s12264-013-1348-5
Huang, Y. F., Zhang, Y., Liu, C. X., Huang, J., & Ding, G. H. (2016). microRNA-125b contributes to high glucose-induced reactive oxygen species generation and apoptosis in HK-2 renal tubular epithelial cells by targeting angiotensin-converting enzyme 2. European Review for Medical and Pharmacological Sciences, 20(19), 4055-4062.
Ikegaya, Y., Yamada, M., Fukuda, T., Kuroyanagi, H., Shirasawa, T., & Nishiyama, N. (2001). Aberrant synaptic transmission in the hippocampal CA3 region and cognitive deterioration in protein-repair enzyme-deficient mice. Hippocampus, 11(3), 287-298. https://doi.org/10.1002/hipo.1043
Jin, J., Cheng, Y., Zhang, Y., Wood, W., Peng, Q., Hutchison, E., Mattson, M. P., Becker, K. G., & Duan, W. (2012). Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. Journal of Neurochemistry, 123(4), 477-490. https://doi.org/10.1111/j.1471-4159.2012.07925.x
Jovicic, A., Zaldivar Jolissaint, J. F., Moser, R., Silva Santos Mde, F., & Luthi-Carter, R. (2013). MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's disease-related mechanisms. PLOS One, 8(1), e54222. https://doi.org/10.1371/journal.pone.0054222
Kim, E., Lowenson, J. D., MacLaren, D. C., Clarke, S., & Young, S. G. (1997). Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6132-6137. https://doi.org/10.1073/pnas.94.12.6132
Kocerha, J., Xu, Y., Prucha, M. S., Zhao, D., & Chan, A. W. (2014). microRNA-128a dysregulation in transgenic Huntington's disease monkeys. Molecular Brain, 7, 46. https://doi.org/10.1186/1756-6606-7-46
Lee, J. C., Kang, S. U., Jeon, Y., Park, J. W., You, J. S., Ha, S. W., Bae, N., Lubec, G., Kwon, S. H., Lee, J. S., Cho, E. J., & Han, J. W. (2012). Protein L-isoaspartyl methyltransferase regulates p53 activity. Nature Communications, 3, 927. https://doi.org/10.1038/ncomms1933
Lee, S. T., Chu, K., Im, W. S., Yoon, H. J., Im, J. Y., Park, J. E., Park, K. H., Jung, K. H., Lee, S. K., Kim, M., & Roh, J. K. (2011). Altered microRNA regulation in Huntington's disease models. Experimental Neurology, 227(1), 172-179. https://doi.org/10.1016/j.expneurol.2010.10.012
Li, H., Zhu, X., Zhang, J., & Shi, J. (2017). MicroRNA-25 inhibits high glucose-induced apoptosis in renal tubular epithelial cells via PTEN/AKT pathway. Biomedicine & Pharmacotherapy = Biomédecine & Pharmacothérapie, 96, 471-479. https://doi.org/10.1016/j.biopha.2017.10.019
Li, Q., Li, X., Wang, L., Zhang, Y., & Chen, L. (2016). miR-98-5p acts as a target for Alzheimer's disease by regulating Aβ production through modulating SNX6 expression. Journal of Molecular Neuroscience, 60(4), 413-420. https://doi.org/10.1007/s12031-016-0815-7
Liang, H., Ding, B., Liang, J., Shi, X., Jiang, X., & Gao, Y. (2018). MicroRNA-10a inhibits A30P alpha-synuclein aggregation and toxicity by targeting proapoptotic protein BCL2L11. International Journal of Clinical and Experimental Pathology, 11(2), 624-633.
Liguori, M., Nuzziello, N., Introna, A., Consiglio, A., Licciulli, F., D'Errico, E., Scarafino, A., Distaso, E., & Simone, I. L. (2018). Dysregulation of microRNAs and target genes networks in peripheral blood of patients with sporadic amyotrophic lateral sclerosis. Frontiers in Molecular Neuroscience, 11, 288. https://doi.org/10.3389/fnmol.2018.00288
Liu, H., Chu, W., Gong, L., Gao, X., & Wang, W. (2016). MicroRNA-26b is upregulated in a double transgenic mouse model of Alzheimer's disease and promotes the expression of amyloid-beta by targeting insulin-like growth factor 1. Molecular Medicine Reports, 13(3), 2809-2814. https://doi.org/10.3892/mmr.2016.4860
Liu, H., Wang, X., Wang, Z. Y., & Li, L. (2020). Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11. Journal of Cellular Physiology, 235(5), 4520-4529. https://doi.org/10.1002/jcp.29329
Liu, J., Zuo, X., Han, J., Dai, Q., Xu, H., Liu, Y., & Cui, S. (2020). MiR-9-5p inhibits mitochondrial damage and oxidative stress in AD cell models by targeting GSK-3beta. Bioscience, Biotechnology, and Biochemistry, 84(11), 2273-2280. https://doi.org/10.1080/09168451.2020.1797469
Liu, Y., Zhang, Y., Liu, P., Bai, H., Li, X., Xiao, J., Yuan, Q., Geng, S., Yin, H., Zhang, H., Wang, Z., Li, J., Wang, S., & Wang, Y. (2019). MicroRNA-128 knockout inhibits the development of Alzheimer's disease by targeting PPARgamma in mouse models. European Journal of Pharmacology, 843, 134-144. https://doi.org/10.1016/j.ejphar.2018.11.004
Lu, T., Pan, Y., Kao, S. Y., Li, C., Kohane, I., Chan, J., & Yankner, B. A. (2004). Gene regulation and DNA damage in the ageing human brain. Nature, 429(6994), 883-891. https://doi.org/10.1038/nature02661
Ma, J., Wang, Y., Xu, H. T., Ren, N., Zhao, N., Wang, B. M., & Du, L. K. (2019). MicroRNA: A novel biomarker and therapeutic target to combat autophagy in diabetic nephropathy. European Review for Medical and Pharmacological Sciences, 23(14), 6257-6263. https://doi.org/10.26355/eurrev_201907_18446
Mai, H., Fan, W., Wang, Y., Cai, Y., Li, X., Chen, F., Chen, X., Yang, J., Tang, P., Chen, H., Zou, T., Hong, T., Wan, C., Zhao, B., & Cui, L. (2019). Intranasal administration of miR-146a Agomir rescued the pathological process and cognitive impairment in an AD mouse model. Molecular Therapy Nucleic Acids, 18, 681-695. https://doi.org/10.1016/j.omtn.2019.10.002
Mishra, P. K. K., & Mahawar, M. (2019). PIMT-mediated protein repair: Mechanism and implications. Biochemistry (Mosc), 84(5), 453-463. https://doi.org/10.1134/S0006297919050018
Moro, M. L., Phillips, A. S., Gaimster, K., Paul, C., Mudher, A., Nicoll, J. A. R., & Boche, D. (2018). Pyroglutamate and isoaspartate modified amyloid-Beta in ageing and Alzheimer's disease. Acta Neuropathologica Communications, 6(1), 3. https://doi.org/10.1186/s40478-017-0505-x
Nie, C., Sun, Y., Zhen, H., Guo, M., Ye, J., Liu, Z., Yang, Y., & Zhang, X. (2020). Differential expression of plasma exo-miRNA in neurodegenerative diseases by next-generation sequencing. Frontiers in Neuroscience, 14, 438. https://doi.org/10.3389/fnins.2020.00438
Ouazia, D., Levros, L. C., Jr., Rassart, E., & Desrosiers, R. R. (2014). Dopamine down-regulation of protein L-isoaspartyl methyltransferase is dependent on reactive oxygen species in SH-SY5Y cells. Neuroscience, 267, 263-276. https://doi.org/10.1016/j.neuroscience.2014.03.001
Ouazia, D., Levros, L. C., Jr., Rassart, E., & Desrosiers, R. R. (2015). The protein l-isoaspartyl (d-aspartyl) methyltransferase protects against dopamine-induced apoptosis in neuroblastoma SH-SY5Y cells. Neuroscience, 295, 139-150. https://doi.org/10.1016/j.neuroscience.2015.03.026
Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. Journal of Neuroscience, 28(53), 14341-14346. https://doi.org/10.1523/JNEUROSCI.2390-08.2008
Pelletier, J., Desrosiers, R. R., & Beliveau, R. (1996). Age-related changes in carboxyl methylation of proteins in the kidney. Mechanisms of Ageing and Development, 86(2), 115-135. https://doi.org/10.1016/0047-6374(95)01682-1
Perna, A. F., Castaldo, P., De Santo, N. G., di Carlo, E., Cimmino, A., Galletti, P., Zappia, V., & Ingrosso, D. (2001). Plasma proteins containing damaged L-isoaspartyl residues are increased in uremia: implications for mechanism. Kidney International, 59(6), 2299-2308. https://doi.org/10.1046/j.1523-1755.2001.00747.x
Qian, X., Tan, J., Liu, L., Chen, S., You, N., Yong, H., Pan, M., You, Q., Ding, D., & Lu, Y. (2018). MicroRNA-134-5p promotes high glucose-induced podocyte apoptosis by targeting bcl-2. American Journal of Translational Research, 10(3), 989-997.
Qin, Z., Dimitrijevic, A., & Aswad, D. W. (2015). Accelerated protein damage in brains of PIMT+/- mice; a possible model for the variability of cognitive decline in human aging. Neurobiology of Aging, 36(2), 1029-1036. https://doi.org/10.1016/j.neurobiolaging.2014.10.036
Qin, Z., Kaufman, R. S., Khoury, R. N., Khoury, M. K., & Aswad, D. W. (2013). Isoaspartate accumulation in mouse brain is associated with altered patterns of protein phosphorylation and acetylation, some of which are highly sex-dependent. PLOS One, 8(11), e80758. https://doi.org/10.1371/journal.pone.0080758
Quinlan, S., Kenny, A., Medina, M., Engel, T., & Jimenez-Mateos, E. M. (2017). MicroRNAs in neurodegenerative diseases. International Review of Cell and Molecular Biology, 334, 309-343. https://doi.org/10.1016/bs.ircmb.2017.04.002
Reichenstein, I., Eitan, C., Diaz-Garcia, S., Haim, G., Magen, I., Siany, A., Hoye, M. L., Rivkin, N., Olender, T., Toth, B., Ravid, R., Mandelbaum, A. D., Yanowski, E., Liang, J., Rymer, J. K., Levy, R., Beck, G., Ainbinder, E., Farhan, S., … Hornstein, E. (2019). Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Science Translational Medicine, 11(523), https://doi.org/10.1126/scitranslmed.aav5264
Reynolds, R. H., Petersen, M. H., Willert, C. W., Heinrich, M., Nymann, N., Dall, M., Treebak, J. T., Björkqvist, M., Silahtaroglu, A., Hasholt, L., & Nørremølle, A. (2018). Perturbations in the p53/miR-34a/SIRT1 pathway in the R6/2 Huntington's disease model. Molecular and Cellular Neuroscience, 88, 118-129. https://doi.org/10.1016/j.mcn.2017.12.009
Roser, A. E., Caldi Gomes, L., Halder, R., Jain, G., Maass, F., Tönges, L., Tatenhorst, L., Bähr, M., Fischer, A., & Lingor, P. (2018). miR-182-5p and miR-183-5p act as GDNF mimics in dopaminergic midbrain neurons. Molecular Therapy Nucleic Acids, 11, 9-22. https://doi.org/10.1016/j.omtn.2018.01.005
Sarkar, S., Jun, S., Rellick, S., Quintana, D. D., Cavendish, J. Z., & Simpkins, J. W. (2016). Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Research, 1646, 139-151. https://doi.org/10.1016/j.brainres.2016.05.026
Saucier, D., Wajnberg, G., Roy, J., Beauregard, A. P., Chacko, S., Crapoulet, N., Fournier, S., Ghosh, A., Lewis, S. M., Marrero, A., O'Connell, C., Ouellette, R. J., & Morin, P. J. (2019). Identification of a circulating miRNA signature in extracellular vesicles collected from amyotrophic lateral sclerosis patients. Brain Research, 1708, 100-108. https://doi.org/10.1016/j.brainres.2018.12.016
Shimizu, T., Fukuda, H., Murayama, S., Izumiyama, N., & Shirasawa, T. (2002). Isoaspartate formation at position 23 of amyloid beta peptide enhanced fibril formation and deposited onto senile plaques and vascular amyloids in Alzheimer's disease. Journal of Neuroscience Research, 70(3), 451-461. https://doi.org/10.1002/jnr.10350
Shimizu, T., Watanabe, A., Ogawara, M., Mori, H., & Shirasawa, T. (2000). Isoaspartate formation and neurodegeneration in Alzheimer's disease. Archives of Biochemistry and Biophysics, 381(2), 225-234. https://doi.org/10.1006/abbi.2000.1955
Sinha, M., Ghose, J., & Bhattarcharyya, N. P. (2011). Micro RNA -214,-150,-146a and-125b target Huntingtin gene. RNA Biology, 8(6), 1005-1021. https://doi.org/10.4161/rna.8.6.16035
Sun, C., Jia, N., Li, R., Zhang, Z., Zhong, Y., & Han, K. (2020). miR-143-3p inhibition promotes neuronal survival in an Alzheimer's disease cell model by targeting neuregulin-1. Folia Neuropathologica, 58(1), 10-21. https://doi.org/10.5114/fn.2020.94002
Takousis, P., Sadlon, A., Schulz, J., Wohlers, I., Dobricic, V., Middleton, L., Lill, C. M., Perneczky, R., & Bertram, L. (2019). Differential expression of microRNAs in Alzheimer's disease brain, blood, and cerebrospinal fluid. Alzheimer's & Dementia, 15(11), 1468-1477. https://doi.org/10.1016/j.jalz.2019.06.4952
Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654-659. https://doi.org/10.1038/ncb1596
Vigneswara, V., Cass, S., Wayne, D., Bolt, E. L., Ray, D. E., & Carter, W. G. (2013). Molecular ageing of alpha- and beta-synucleins: Protein damage and repair mechanisms. PLOS One, 8(4), e61442. https://doi.org/10.1371/journal.pone.0061442
Wang, J., Duan, L., Guo, T., Gao, Y., Tian, L., Liu, J., Wang, S., & Yang, J. (2016). Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy. Journal of Diabetes and Its Complications, 30(3), 406-414. https://doi.org/10.1016/j.jdiacomp.2015.12.011
Wang, J., Wang, G., Liang, Y., & Zhou, X. (2019). Expression profiling and clinical significance of plasma microRNAs in diabetic nephropathy. Journal of Diabetes Research, 2019, 5204394. https://doi.org/10.1155/2019/5204394
Wang, L., Liu, J., Wang, Q., Jiang, H., Zeng, L., Li, Z., & Liu, R. (2019). MicroRNA-200a-3p mediates neuroprotection in Alzheimer-related deficits and attenuates amyloid-beta overproduction and Tau hyperphosphorylation via coregulating BACE1 and PRKACB. Frontiers in Pharmacology, 10, 806. https://doi.org/10.3389/fphar.2019.00806
Wang, L. P., Gao, Y. Z., Song, B., Yu, G., Chen, H., Zhang, Z. W., Yan, C. F., Pan, Y. L., & Yu, X. Y. (2019). MicroRNAs in the progress of diabetic nephropathy: A systematic review and meta-analysis. Evidence-Based Complementary and Alternative Medicine, 2019, 3513179. https://doi.org/10.1155/2019/3513179
Wang, L. P., Geng, J. N., Sun, B., Sun, C. B., Shi, Y., & Yu, X. Y. (2020). MiR-92b-3p is Induced by advanced glycation end products and involved in the pathogenesis of diabetic nephropathy. Evidence-Based Complementary and Alternative Medicine, 2020, 6050874. https://doi.org/10.1155/2020/6050874
Wang, Z., Sun, L., Jia, K., Wang, H., & Wang, X. (2019). miR-9-5p modulates the progression of Parkinson's disease by targeting SIRT1. Neuroscience Letters, 701, 226-233. https://doi.org/10.1016/j.neulet.2019.02.038
Wu, B. W., Wu, M. S., & Guo, J. D. (2018). Effects of microRNA-10a on synapse remodeling in hippocampal neurons and neuronal cell proliferation and apoptosis through the BDNF-TrkB signaling pathway in a rat model of Alzheimer's disease. Journal of Cellular Physiology, 233(7), 5281-5292. https://doi.org/10.1002/jcp.26328
Wägner, A. M., Cloos, P., Bergholdt, R., Eising, S., Brorsson, C., Stalhut, M., Christgau, S., Nerup, J., & Pociot, F. (2008). Posttranslational protein modifications in type 1 diabetes-Genetic studies with PCMT1, the repair enzyme protein isoaspartate methyltransferase (PIMT) encoding gene. The Review of Diabetic Studies, 5(4), 225-231. https://doi.org/10.1900/RDS.2008.5.225
Xing, R. X., Li, L. G., Liu, X. W., Tian, B. X., & Cheng, Y. (2020). Down regulation of miR-218, miR-124, and miR-144 relates to Parkinson's disease via activating NF-kappaB signaling. The Kaohsiung Journal of Medical Sciences, 36(10), 786-792. https://doi.org/10.1002/kjm2.12241
Xu, Y., Chen, P., Wang, X., Yao, J., & Zhuang, S. (2018). miR-34a deficiency in APP/PS1 mice promotes cognitive function by increasing synaptic plasticity via AMPA and NMDA receptors. Neuroscience Letters, 670, 94-104. https://doi.org/10.1016/j.neulet.2018.01.045
Xu, Y., Zhang, J., Fan, L., & He, X. (2018). miR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4. Biochemical and Biophysical Research Communications, 505(2), 339-345. https://doi.org/10.1016/j.bbrc.2018.09.067
Xue, M., Li, Y., Hu, F., Jia, Y. J., Zheng, Z. J., Wang, L., & Xue, Y. M. (2018). High glucose up-regulates microRNA-34a-5p to aggravate fibrosis by targeting SIRT1 in HK-2cells. Biochemical and Biophysical Research Communications, 498(1), 38-44. https://doi.org/10.1016/j.bbrc.2017.12.048
Yamamoto, A., Takagi, H., Kitamura, D., Tatsuoka, H., Nakano, H., Kawano, H., Kuroyanagi, H., Yahagi, Y., Kobayashi, S., Koizumi, K., Sakai, T., Saito, K., Chiba, T., Kawamura, K., Suzuki, K., Watanabe, T., Mori, H., & Shirasawa, T. (1998). Deficiency in protein L-isoaspartyl methyltransferase results in a fatal progressive epilepsy. Journal of Neuroscience, 18(6), 2063-2074.
Yang, C. P., Zhang, Z. H., Zhang, L. H., & Rui, H. C. (2016). Neuroprotective role of microRNA-22 in a 6-hydroxydopamine-induced cell model of Parkinson's disease via regulation of its target gene TRPM7. Journal of Molecular Neuroscience, 60(4), 445-452. https://doi.org/10.1007/s12031-016-0828-2
Zhang, L., He, S., Guo, S., Xie, W., Xin, R., Yu, H., Yang, F., Qiu, J., Zhang, D., Zhou, S., & Zhang, K. (2014). Down-regulation of miR-34a alleviates mesangial proliferation in vitro and glomerular hypertrophy in early diabetic nephropathy mice by targeting GAS1. Journal of Diabetes and Its Complications, 28(3), 259-264. https://doi.org/10.1016/j.jdiacomp.2014.01.002
Zhang, Q. S., Liu, W., & Lu, G. X. (2017). miR-200a-3p promotes b-amyloid-induced neuronal apoptosis through down-regulation of SIRT1 in Alzheimer's disease. Journal of Biosciences, 42(3), 397-404. https://doi.org/10.1007/s12038-017-9698-1
Zhang, X., Song, S., & Luo, H. (2016). Regulation of podocyte lesions in diabetic nephropathy via miR-34a in the Notch signaling pathway. Medicine (Baltimore), 95(44), e5050. https://doi.org/10.1097/MD.0000000000005050
Zhao, D., Jia, J., & Shao, H. (2017). miR-30e targets GLIPR-2 to modulate diabetic nephropathy: In vitro and in vivo experiments. Journal of Molecular Endocrinology, 59(2), 181-190. https://doi.org/10.1530/JME-17-0083
Zhao, Y., Yin, Z., Li, H., Fan, J., Yang, S., Chen, C., & Wang, D. W. (2017). MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice. Aging Cell, 16(2), 387-400. https://doi.org/10.1111/acel.12563
Zhou, F., Zhang, C., Guan, Y., Chen, Y., Lu, Q., Jie, L., Gao, H., Du, H., Zhang, H., Liu, Y., & Wang, X. (2018). Screening the expression characteristics of several miRNAs in G93A-SOD1 transgenic mouse: Altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. Journal of Neurochemistry, 145(1), 51-67. https://doi.org/10.1111/jnc.14229

Auteurs

Zhonghao Su (Z)

Department of Febrile Disease, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Na Ren (N)

Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Zicheng Ling (Z)

Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Lanyue Sheng (L)

Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Sirui Zhou (S)

Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Chunxia Guo (C)

Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Zunji Ke (Z)

Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Tiefeng Xu (T)

Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Zhenxia Qin (Z)

Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH