The multifaceted hTR telomerase RNA from a structural perspective: Distinct domains of hTR differentially interact with protein partners to orchestrate its telomerase-independent functions.
lncRNA
non-canonical functions
telomerase RNA
Journal
BioEssays : news and reviews in molecular, cellular and developmental biology
ISSN: 1521-1878
Titre abrégé: Bioessays
Pays: United States
ID NLM: 8510851
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
revised:
13
07
2021
received:
09
04
2021
accepted:
15
07
2021
pubmed:
29
7
2021
medline:
29
10
2021
entrez:
28
7
2021
Statut:
ppublish
Résumé
Human telomerase progressively emerged as a multifaceted ribonucleoprotein complex with additional functions beyond telomeric repeat synthesis. Both the hTERT catalytic subunit and the hTR long non-coding RNA (lncRNA) subunit are engaged in highly regulated cellular pathways that, together, contribute to cell fitness and protection against apoptosis. We recently described a new role for hTR in regulating the abundance of replication protein A at telomeres, adding to the growing repertoire of hTR's functions. Here, we focus on the non-canonical roles of hTR and discuss them in the context of the structural elements of the lncRNA. We propose that some functions of hTR may compete amongst each other through distinct interactions with its partners, proteins or mRNAs. We postulate that hTR's non-canonical functions may be highly relevant in the context of normal somatic cells that naturally silence hTERT gene, while keeping hTR expression.
Identifiants
pubmed: 34319611
doi: 10.1002/bies.202100099
doi:
Substances chimiques
DNA-Binding Proteins
0
RNA, Long Noncoding
0
telomerase RNA
0
RNA
63231-63-0
Telomerase
EC 2.7.7.49
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2100099Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Harley, C. B., & Villeponteau, B. (1995). Telomeres and telomerase in aging and cancer. Current Opinion in Genetics & Development, 5, 249-255.
Huffman, K. E., Levene, S. D., Tesmer, V. M., Shay, J. W., & Wright, W. E. (2000). Telomere shortening is proportional to the size of the G-rich telomeric 3’-overhang. Journal of Biological Chemistry, 275, 19719-19722.
Nguyen, T. H. D., Tam, J., Wu, R. A., Greber, B. J., Toso, D., Nogales, E., & Collins, K. (2018). Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature, 557, 190-195.
Ghanim, G. E., Fountain, A. J., van Roon, A.-M. M., Rangan, R., Das, R., Collins, K., & Nguyen, T. H. D. (2021). Structure of human telomerase holoenzyme with bound telomeric DNA. Nature, 593, 449-453.
Wang, C., & Meier, U. T. (2004). Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO Journal, 23, 1857-1867.
Tseng, C. K., Wang, H. F., Burns, A. M. M., Schroeder, M. R. R., Gaspari, M., & Baumann, P. (2015). Human telomerase RNA processing and quality control. Cell Reports, 13, 2232-2243.
d'Adda Di Fagagna, F., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N. P., & Jackson, S. P. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature, 426, 194-198.
Shay, J. W., & Wright, W. E. (2005). Senescence and immortalization: Role of telomeres and telomerase. Carcinogenesis, 26, 867-874.
Cesare, A. J., & Reddel, R. R. (2010). Alternative lengthening of telomeres: Models, mechanisms and implications. Nature Reviews Genetics, 11, 319-330.
Park, J. I., Venteicher, A. S., Hong, J. Y., Choi, J., Shkreli, M., Chang, W., Meng, Z., Cheung, P., Ji, H., MacLaughlin, M., Veenstra, T. D., Nusse, R., McCrea, P. D., & Artandi, S. E. (2009). Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 460, 66-72.
Ségal-Bendirdjian, E., & Geli, V. (2019). Non-canonical roles of telomerase: Unraveling the Imbroglio. Frontiers in Cell and Developmental Biology, 7, 332.
Masutomi, K., Possemato, R., Wong, J. M. Y., Currier, J. L., Tothova, Z., Manola, J. B., Ganesan, S., Lansdorp, P. M., Collins, K., & Hahn, W. C. (2005). The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proceedings of the National Academy of Sciences of the United States of America, 102, 8222-8227.
Rosen, J., Jakobs, P., Ale-Agha, N., Altschmied, J., & Haendeler, J. (2020). Non-canonical functions of telomerase reverse transcriptase-Impact on redox homeostasis. Redox Biology, 34, 101543.
Li, S., Rosenberg, J. E., Donjacour, A. A., Botchkina, I. L., Hom, Y. K., Cunha, G. R., & Blackburn, E. H. (2004). Rapid inhibition of cancer cell growth induced by lentiviral delivery and expression of mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Research, 64, 4833-4840.
Li, Y., Li, H., Yao, G., Li, W., Wang, F., Jiang, Z., & Li, M. (2007). Inhibition of telomerase RNA (hTR) in cervical cancer by adenovirus-delivered siRNA. Cancer Gene Therapy, 14, 748-755.
Gazzaniga, F. S., & Blackburn, E. H. (2014). An antiapoptotic role for telomerase RNA in human immune cells independent of telomere integrity or telomerase enzymatic activity. Blood, 124, 3675-3684.
Kedde, M., Le Sage, C., Duursma, A., Zlotorynski, E., Van Leeuwen, B., Nijkamp, W., Beijersbergen, R., & Agami, R. (2006). Telomerase-independent regulation of ATR by human telomerase RNA. Journal of Biological Chemistry, 281, 40503-40514.
Raghunandan, M., Geelen, D., Majerova, E., & Decottignies, A. (2021). NHP2 downregulation counteracts hTR-mediated activation of the DNA damage response at ALT telomeres. EMBO Journal, 40, e106336.
Ivanyi-Nagy, R., Ahmed, S. M., Peter, S., Ramani, P. D., Ong, P. F., Dreesen, O., & Dröge, P. (2018). The RNA interactome of human telomerase RNA reveals a coding-independent role for a histone mRNA in telomere homeostasis. ELife, 7, e40037.
Cheng, Y., Liu, P., Zheng, Q., Gao, G., Yuan, J., Wang, P., Huang, J., Xie, L., Lu, X., Tong, T., Chen, J., Lu, Z., Guan, J., & Wang, G. (2018). Mitochondrial trafficking and processing of telomerase RNA TERC. Cell Reports, 24, 2589-2595.
Zheng, Q., Liu, P., Gao, G., Yuan, J., Wang, P., Huang, J., Xie, L., Lu, X., Di, F., Tong, T., Chen, J., Lu, Z., Guan, J., & Wang, G. (2019). Mitochondrion-processed TERC regulates senescence without affecting telomerase activities. Protein Cell, 10, 631-648.
Zhang, Q., Kim, N. K., & Feigon, J. (2011). Architecture of human telomerase RNA. Proceedings of the National Academy of Sciences of the United States of America, 108, 20325-20332.
Blasco, M. A., Lee, H. W., Hande, M. P., Samper, E., Lansdorp, P. M., DePinho, R. A., & Greider, C. W. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell, 91, 25-34.
Chen, J. L., Blasco, M. A., & Greider, C. W. (2000). Secondary structure of vertebrate telomerase RNA. Cell, 100, 503-514.
Xi, L., & Cech, T. R. (2014). Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Research, 42, 8565-8577.
Egan, E. D., & Collins, K. (2012). Biogenesis of telomerase ribonucleoproteins. RNA, 18, 1747-1759.
Stellwagen, A. E., Haimberger, Z. W., Veatch, J. R., & Gottschling, D. E. (2003). Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes & Development, 17, 2384-2395.
Ting, N. S. Y., Yu, Y., Pohorelic, B., Lees-Miller, S. P., & Beattie, T. L. (2005). Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase. Nucleic Acids Research, 33, 2090-2098.
Bailey, S. M., Brenneman, M. A., Halbrook, J., Nickoloff, J. A., Ullrich, R. L., & Goodwin, E. H. (2004). The kinase activity of DNA-PK is required to protect mammalian telomeres. DNA Repair, 3, 225-233.
Ting, N. S. Y., Pohorelic, B., Yu, Y., Lees-Miller, S. P., & Beattie, T. L. (2009). The human telomerase RNA component, hTR, activates the DNA-dependent protein kinase to phosphorylate heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Research, 37, 6105-6115.
Sui, J., Lin, Y. F., Xu, K., Lee, K. J., Wang, D., & Chen, B. P. C. (2015). DNA-PKcs phosphorylates hnRNP-A1 to facilitate the RPA-to-POT1 switch and telomere capping after replication. Nucleic Acids Research, 43, 5971-5983.
Flynn, R. L., Centore, R. C., O'Sullivan, R. J., Rai, R., Tse, A., Songyang, Z., Chang, S., Karlseder, J., & Zou, L. (2011). TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature, 471, 532-536.
Feng, J., Funk, W. D., Wang, S. S., Weinrich, S. L., Avilion, A. A., Chiu, C. P., Adams, R. R., Chang, E., Allsopp, R. C., Yu, J., Le, S., West, M. D., Harley, C. B., Andrews, W. H., Greider, C. W., & Villeponteau, B. (1995). The RNA component of human telomerase. Science, 269, 1236-1241.
Vulliamy, T., Beswick, R., Kirwan, M., Marrone, A., Digweed, M., Walne, A., & Dokal, I. (2008). Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proceedings of the National Academy of Sciences of the United States of America, 105, 8073-8078.
Benyelles, M., O'donohue, M.-F., Kermasson, L., Lainey, E., Borie, R., Lagresle-Peyrou, C., Nunes, H., Cazelles, C., Crestani, B., De Villartay, J.-P., Gleizes, P.-E., Callebaut, I., Kannengiesser, C., & Revy, P. (2020). NHP2 deficiency impairs rRNA biogenesis and causes pulmonary fibrosis and Høyeraal-Hreidarsson syndrome. Human Molecular Genetics, 29, 907-922.
Nagpal, N., & Agarwal, S. (2020). Telomerase RNA processing: Implications for human health and disease. Stem Cells, 38, 1532-1543.
Vulliamy, T. J., Kirwan, M. J., Beswick, R., Hossain, U., Baqai, C., Ratcliffe, A., Marsh, J., Walne, A., & Dokal, I. (2011). Differences in disease severity but similar telomere lengths in genetic subgroups of patients with telomerase and shelterin mutations. PLoS One, 6, e24383.
Marrone, A., Sokhal, P., Walne, A., Beswick, R., Kirwan, M., Killick, S., Williams, M., Marsh, J., Vulliamy, T., & Dokal, I. (2007). Functional characterization of novel telomerase RNA (TERC) mutations in patients with diverse clinical and pathological presentations. Haematologica, 92, 1013-1020.
Robart, A. R., & Collins, K. (2010). Investigation of human telomerase holoenzyme assembly, activity, and processivity using disease-linked subunit variants. Journal of Biological Chemistry, 285, 4375-4386.