Building siRNAs with Cubes: Synthesis and Evaluation of Cubane-Modified siRNAs.
cubanes
gene-silencing
phosphoramidite
siRNA
strand selection
Journal
Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360
Informations de publication
Date de publication:
13 10 2021
13 10 2021
Historique:
revised:
27
07
2021
received:
08
07
2021
pubmed:
29
7
2021
medline:
22
2
2022
entrez:
28
7
2021
Statut:
ppublish
Résumé
Cubane molecules hold great potential for medicinal chemistry applications due to their inherent stability and low toxicity. In this study, we report the synthesis of a cubane derivative phosphoramidite for the incorporation of cubane into small interfering RNAs (siRNAs). Synthetic siRNAs rely on chemical modifications to improve their pharmacokinetic profiles. However, they are still able to mediate sequence-specific gene silencing via the endogenous RNA interference pathway. We designed a library of siRNAs bearing cubane at different positions within the sense and antisense strands. All siRNAs showed excellent gene-silencing activity, with IC
Identifiants
pubmed: 34319643
doi: 10.1002/cbic.202100334
doi:
Substances chimiques
Organophosphorus Compounds
0
RNA, Small Interfering
0
phosphoramidite
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2981-2985Subventions
Organisme : Natural Sciences and Engineering Research Council
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, Nature 1998, 391, 806-811.
C. Matranga, Y. Tomari, C. Shin, D. P. Bartel, P. D. Zamore, Cell 2005, 123, 607-620;
A. Khvorova, A. Reynolds, S. D. Jayasena, Cell 2003, 115, 209-216.
P. R. de Paula Brandão, S. S. Titze-de-Almeida, R. Titze-de-Almeida, Mol. Diagn. Ther. 2020, 24, 61-68;
J. Rüger, S. Ioannou, D. Castanotto, C. A. Stein, Trends Pharmacol. Sci. 2020, 41, 27-41.
M. Manoharan, Biochim. Biophys. Acta 1999, 1489, 117-130;
P. S. Pallan, E. M. Greene, P. A. Jicman, R. K. Pandey, M. Manoharan, E. Rozners, M. Egli, Nucleic Acids Res. 2011, 39, 3482-3495.
J. Wang, Z. Lu, M. G. Wientjes, J. L. Au, AAPS J. 2010, 12, 492-503.
X. Shen, D. R. Corey, Nucleic Acids Res. 2017, 46, 1584-1600.
F. Eckstein, Nucleic Acid Ther. 2014, 24, 374-387;
A. H. Hall, J. Wan, E. E. Shaughnessy, B. Ramsay Shaw, K. A. Alexander, Nucleic Acids Res. 2004, 32, 5991-6000.
D. Mutisya, C. Selvam, B. D. Lunstad, P. S. Pallan, A. Haas, D. Leake, M. Egli, E. Rozners, Nucleic Acids Res. 2014, 42, 6542-6551.
T. C. Efthymiou, B. Peel, V. Huynh, J.-P. Desaulniers, Bioorg. Med. Chem. Lett. 2012, 22, 5590-5594;
T. C. Efthymiou, V. Huynh, J. Oentoro, B. Peel, J. P. Desaulniers, Bioorg. Med. Chem. Lett. 2012, 22, 1722-1726.
K. Tsubaki, M. L. Hammill, A. J. Varley, M. Kitamura, T. Okauchi, J.-P. Desaulniers, ACS Med. Chem. Lett. 2020, 11, 1457-1462.
M. L. Hammill, C. Isaacs-Trépanier, J.-P. Desaulniers, ChemistrySelect 2017, 2, 9810-9814;
M. L. Hammill, G. Islam, J.-P. Desaulniers, Org. Biomol. Chem. 2020, 18, 41-46;
J. P. Desaulniers, G. Hagen, J. Anderson, C. McKim, B. Roberts, RSC Adv. 2017, 7, 3450-3454.
T. A. Reekie, C. M. Williams, L. M. Rendina, M. Kassiou, J. Med. Chem. 2019, 62, 1078-1095.
P. E. Eaton, Angew. Chem. Int. Ed. Engl. 1992, 31, 1421-1436.
Y.-W. Cheung, P. Röthlisberger, A. E. Mechaly, P. Weber, F. Levi-Acobas, Y. Lo, A. W. C. Wong, A. B. Kinghorn, A. Haouz, G. P. Savage, M. Hollenstein, J. A. Tanner, Proc. Nat. Acad. Sci. USA 2020, 117, 16790-16798.
B. A. Chalmers, H. Xing, S. Houston, C. Clark, S. Ghassabian, A. Kuo, B. Cao, A. Reitsma, C.-E. P. Murray, J. E. Stok, G. M. Boyle, C. J. Pierce, S. W. Littler, D. A. Winkler, P. V. Bernhardt, C. Pasay, J. J. De Voss, J. McCarthy, P. G. Parsons, G. H. Walter, M. T. Smith, H. M. Cooper, S. K. Nilsson, J. Tsanaktsidis, G. P. Savage, C. M. Williams, Angew. Chem. Int. Ed. 2016, 55, 3580-3585;
Angew. Chem. 2016, 128, 3644-3649.
M. J. Falkiner, S. W. Littler, K. J. McRae, G. P. Savage, J. Tsanaktsidis, Org. Process Res. Dev. 2013, 17, 1503-1509;
M. Bliese, J. Tsanaktsidis, Aust. J. Chem. 1997, 50, 189-192.
H. Addepalli, Meena, C. G. Peng, G. Wang, Y. Fan, K. Charisse, K. N. Jayaprakash, K. G. Rajeev, R. K. Pandey, G. Lavine, L. Zhang, K. Jahn-Hofmann, P. Hadwiger, M. Manoharan, M. A. Maier, Nucleic Acids Res. 2010, 38, 7320-7331.
J. Lisowiec-Wąchnicka, N. Bartyś, A. Pasternak, Sci. Rep. 2019, 9, 2477;
C. L. Noland, J. A. Doudna, RNA 2013, 19, 639-648;
A. J. Varley, J.-P. Desaulniers, RSC Adv. 2021, 11, 2415-2426.
A. Varley, M. L. Hammill, L. Salim, J.-P. Desaulniers, Nucleic Acid Ther. 2020, 30, 229-236.