Oligopaint DNA FISH reveals telomere-based meiotic pairing dynamics in the silkworm, Bombyx mori.
Animals
Bombyx
/ genetics
Cell Cycle Proteins
/ genetics
Centromere
/ metabolism
Chromosomal Proteins, Non-Histone
/ genetics
Chromosome Pairing
/ genetics
Chromosome Segregation
/ genetics
Chromosomes
/ genetics
DNA
/ genetics
Female
Male
Meiosis
/ genetics
Microtubules
/ metabolism
Synaptonemal Complex
/ metabolism
Telomere
/ genetics
Journal
PLoS genetics
ISSN: 1553-7404
Titre abrégé: PLoS Genet
Pays: United States
ID NLM: 101239074
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
29
03
2021
accepted:
07
07
2021
revised:
09
08
2021
pubmed:
29
7
2021
medline:
9
11
2021
entrez:
28
7
2021
Statut:
epublish
Résumé
Accurate chromosome segregation during meiosis is essential for reproductive success. Yet, many fundamental aspects of meiosis remain unclear, including the mechanisms regulating homolog pairing across species. This gap is partially due to our inability to visualize individual chromosomes during meiosis. Here, we employ Oligopaint FISH to investigate homolog pairing and compaction of meiotic chromosomes and resurrect a classical model system, the silkworm Bombyx mori. Our Oligopaint design combines multiplexed barcoding with secondary oligo labeling for high flexibility and low cost. These studies illustrate that Oligopaints are highly specific in whole-mount gonads and on meiotic squashes. We show that meiotic pairing is robust in both males and females and that pairing can occur through numerous partially paired intermediate structures. We also show that pairing in male meiosis occurs asynchronously and seemingly in a transcription-biased manner. Further, we reveal that meiotic bivalent formation in B. mori males is highly similar to bivalent formation in C. elegans, with both of these pathways ultimately resulting in the pairing of chromosome ends with non-paired ends facing the spindle pole. Additionally, microtubule recruitment in both C. elegans and B. mori is likely dependent on kinetochore proteins but independent of the centromere-specifying histone CENP-A. Finally, using super-resolution microscopy in the female germline, we show that homologous chromosomes remain associated at telomere domains in the absence of chiasma and after breakdown and modification to the synaptonemal complex in pachytene. These studies reveal novel insights into mechanisms of meiotic homolog pairing both with or without recombination.
Identifiants
pubmed: 34319984
doi: 10.1371/journal.pgen.1009700
pii: PGENETICS-D-21-00432
pmc: PMC8351950
doi:
Substances chimiques
Cell Cycle Proteins
0
Chromosomal Proteins, Non-Histone
0
DNA
9007-49-2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1009700Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Nat Cell Biol. 2010 Sep;12(9):894-901
pubmed: 20729837
PLoS Genet. 2013;9(12):e1004013
pubmed: 24385920
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21301-6
pubmed: 23236188
Genes Dev. 2008 Oct 15;22(20):2886-901
pubmed: 18923085
Biochim Biophys Acta. 2004 Mar 15;1677(1-3):165-80
pubmed: 15020057
Genes Dev. 2010 Feb 1;24(3):219-28
pubmed: 20123904
J Cell Sci. 1970 Jul;7(1):65-89
pubmed: 5529252
Curr Biol. 2007 Mar 6;17(5):R165-8
pubmed: 17339014
Cell. 2005 Dec 16;123(6):1037-50
pubmed: 16360034
Adv Genet. 1997;35:253-84
pubmed: 9348650
Chromosoma. 1976 Feb 23;54(3):245-93
pubmed: 1248341
Nat Cell Biol. 2005 Dec;7(12):1248-55
pubmed: 16273096
PLoS Genet. 2009 Aug;5(8):e1000611
pubmed: 19696886
Genes Dev. 2014 Mar 15;28(6):594-607
pubmed: 24589552
Methods Enzymol. 2016;572:1-49
pubmed: 27241748
Nat Genet. 2020 Aug;52(8):840-848
pubmed: 32572210
PLoS Genet. 2018 Jul 12;14(7):e1007393
pubmed: 30001329
Chromosoma. 1977 Apr 19;60(3):205-21
pubmed: 870294
PLoS Genet. 2013;9(12):e1004012
pubmed: 24367278
Chromosome Res. 1997 Feb;5(1):47-56
pubmed: 9088643
DNA Res. 2004 Feb 29;11(1):27-35
pubmed: 15141943
J Biophys Biochem Cytol. 1956 Mar 25;2(2):215-8
pubmed: 13319383
Chromosome Res. 1993 May;1(1):15-26
pubmed: 8143084
Nat Commun. 2019 Oct 10;10(1):4604
pubmed: 31601818
Exp Mol Med. 2018 Aug 28;50(8):1-12
pubmed: 30154456
Curr Opin Cell Biol. 2013 Jun;25(3):349-56
pubmed: 23578368
J Morphol. 1968 Feb;124(2):143-66
pubmed: 5654408
Elife. 2019 Nov 04;8:
pubmed: 31682226
Science. 2004 Dec 10;306(5703):1937-40
pubmed: 15591204
Insect Biochem Mol Biol. 2019 Apr;107:53-62
pubmed: 30802494
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12):
pubmed: 33723072
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2183-E2192
pubmed: 29463736
Chromosome Res. 2004;12(6):641-53
pubmed: 15289669
Trends Cell Biol. 2005 Dec;15(12):674-81
pubmed: 16257210
Curr Biol. 2020 Feb 24;30(4):561-572.e10
pubmed: 32032508
Genetics. 2020 Mar;214(3):605-616
pubmed: 31915134
Curr Biol. 2021 Jan 11;31(1):173-181.e7
pubmed: 33125865
Mol Biol Evol. 2019 Oct 1;36(10):2195-2204
pubmed: 31270536
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1679-1685
pubmed: 30655344
Chromosoma. 1982;86(3):409-28
pubmed: 7172865
Biochim Biophys Acta. 2008 Nov;1783(11):2155-60
pubmed: 18706455
J Morphol. 2004 Jan;259(1):1-6
pubmed: 14666520
Insect Biochem Mol Biol. 2014 Feb;45:40-50
pubmed: 24291286
Cytogenet Genome Res. 2017;153(3):158-164
pubmed: 29262412
Methods Mol Biol. 2017;1663:231-252
pubmed: 28924672
Elife. 2014 Sep 23;3:
pubmed: 25247700
Chromosome Res. 2012 Jul;20(5):579-93
pubmed: 22766638
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6857-E6866
pubmed: 28760978
Genetics. 2015 Jul;200(3):771-9
pubmed: 25971668
Chromosome Res. 2011 Oct;19(7):901-9
pubmed: 22006037
Tokai J Exp Clin Med. 1986 Dec;11(6):437-51
pubmed: 3445259
J Cell Biol. 1999 Nov 1;147(3):471-80
pubmed: 10545493
Methods Mol Biol. 2019;2038:167-180
pubmed: 31407284
PLoS Genet. 2012 Jun;8(6):e1002790
pubmed: 22761591
J Cell Biol. 1994 Oct;127(2):273-85
pubmed: 7929575
J Insect Physiol. 1997 Nov;43(12):1085-1092
pubmed: 12770480
Cell Discov. 2020 Sep 8;6:60
pubmed: 32963806
J Cell Sci. 1997 May;110 ( Pt 9):1033-40
pubmed: 9175699
J Insect Sci. 2017 Sep 1;17(5):
pubmed: 29117372
Science. 2018 Oct 26;362(6413):
pubmed: 30361340
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18423-18428
pubmed: 31444302
Nat Commun. 2015 May 12;6:7147
pubmed: 25962338
Elife. 2019 May 14;8:
pubmed: 31084706
J Insect Physiol. 2004 Nov;50(11):1045-51
pubmed: 15607507
Nat Cell Biol. 2009 Jul;11(7):839-44
pubmed: 19525937
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10412-10417
pubmed: 31036645
Science. 2003 Aug 8;301(5634):785-9
pubmed: 12907787
Chromosoma. 1974;47(2):167-78
pubmed: 4141955
Chromosoma. 1965;17(2):85-103
pubmed: 5884221
Annu Rev Genet. 1984;18:331-413
pubmed: 6241453
PLoS Genet. 2019 Jan 17;15(1):e1007730
pubmed: 30653507
PLoS Genet. 2012 Jun;8(6):e1002701
pubmed: 22761579
Nat Commun. 2014 Oct 08;5:4979
pubmed: 25296379
J Biophys Biochem Cytol. 1956 Jul 25;2(4):403-6
pubmed: 13357504
Genetics. 2007 Sep;177(1):31-46
pubmed: 17890361
PLoS Genet. 2012;8(5):e1002667
pubmed: 22589731
J Cell Sci. 2018 Mar 6;131(5):
pubmed: 29420300
Zygote. 2002 Feb;10(1):23-9
pubmed: 11964088
Nature. 2016 Jan 21;529(7586):418-22
pubmed: 26760202
Dev Cell. 2013 Jan 28;24(2):196-205
pubmed: 23318132