Benzo[a]pyrene diol epoxide-induced transformed cells identify the significance of hsa_circ_0051488, a ERCC1-derived circular RNA in pulmonary squamous cell carcinoma.
Benzo(a)pyrene
/ adverse effects
Carcinoma, Squamous Cell
/ genetics
Cell Line, Tumor
Cell Proliferation
Cell Transformation, Neoplastic
/ chemically induced
DNA-Binding Proteins
/ genetics
Endonucleases
/ genetics
Gene Expression Regulation
/ drug effects
Humans
Lung Neoplasms
/ genetics
RNA Interference
RNA, Circular
/ genetics
Signal Transduction
/ drug effects
ERCC1
circular RNA (circRNA)
competing endogenous RNA (ceRNA)
lung squamous cell carcinoma
malignant transformation
Journal
Molecular carcinogenesis
ISSN: 1098-2744
Titre abrégé: Mol Carcinog
Pays: United States
ID NLM: 8811105
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
revised:
20
05
2021
received:
02
03
2021
accepted:
14
07
2021
pubmed:
29
7
2021
medline:
28
9
2021
entrez:
28
7
2021
Statut:
ppublish
Résumé
ERCC1 is a gene for repairing DNA damage whose function is related to carcinogenic-induced tumorigenesis and the effectiveness of platinum therapies. Circular RNAs (circRNAs) are products of posttranscriptional regulation with pleiotropic effects on the pathogenesis of lung cancer. We aim to identify that specific circRNAs derived from ERCC1 can regulate key biological processes involved in the development of lung cancer. We performed bioinformatics analysis, in vitro experiments, and analyzed clinical samples, to determine the biological features of a certain ERCC1-derived circRNA termed as hsa_circ_0051488 in benzo[a]pyrene diol epoxide-induced malignant transformed cell and lung cancer cell. The well-established model of transformed cells provided an ideal platform for analyzing the molecular characteristics of this circRNA in the malignant transformation of lung epithelial cell, which supports that hsa_circ_0051488 functions in the onset and growth of lung squamous cell carcinoma (LUSC). Further analysis indicates that the absence of hsa_circ_0051488 promoted the proliferation of cells with the malignant phenotype. Extensive experiments confirm that hsa_circ_0051488 is present in the cytoplasm and functioned as a competing endogenous RNA. In particular, hsa_circ_0051488 binds to mir-6717-5p, thereby modulating the expression of SATB2 gene, a lung cancer suppressor. Furthermore, our in silico experiments indicate that SATB2 can inhibit multiple tumor pathways and its expression positively correlated with the tumor suppressor gene CRMP1. These findings suggest a possible regulatory mechanism of hsa_circ_0051488 in LUSC, and that the newly discovered hsa_circ_0051488/miR-6717-5p/SATB2 axis may be a potential route for therapeutic intervention of LUSC.
Substances chimiques
DNA-Binding Proteins
0
RNA, Circular
0
Benzo(a)pyrene
3417WMA06D
ERCC1 protein, human
EC 3.1.-
Endonucleases
EC 3.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
684-701Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health. 2018;6(5):e555-e567. https://doi.org/10.1016/S2214-109X(18)30127-X
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. https://doi.org/10.3322/caac.21551
Chen S, Li D, Zhang H, et al. The development of a cell-based model for the assessment of carcinogenic potential upon long-term PM2.5 exposure. Environ Int. 2019;131:104943. https://doi.org/10.1016/j.envint.2019.104943
Ashraf-Uz-Zaman M, Bhalerao A, Mikelis CM, Cucullo L, German NA. Assessing the current state of lung cancer chemoprevention: a comprehensive overview. Cancers (Basel). 2020;12(5). https://doi.org/10.3390/cancers12051265
Meng H, Li G, Wei W, et al. Epigenome-wide DNA methylation signature of benzo[a]pyrene exposure and their mediation roles in benzo[a]pyrene-associated lung cancer development. J Hazard Mater. 2021;416:125839. https://doi.org/10.1016/j.jhazmat.2021.125839
Christmann M, Boisseau C, Kitzinger R, et al. Adaptive upregulation of DNA repair genes following benzo(a)pyrene diol epoxide protects against cell death at the expense of mutations. Nucleic Acids Res. 2016;44(22):10727-10743. https://doi.org/10.1093/nar/gkw873
Yu T, Liu Y, Lu X, et al. Excision repair of BPDE-adducts in human lymphocytes: diminished capacity associated with ERCC1 C8092A (rs3212986) polymorphism. Arch Toxicol. 2013;87(4):699-709. https://doi.org/10.1007/s00204-012-0986-0
Meschini R, Marotta E, Berni A, et al. DNA repair deficiency and BPDE-induced chromosomal alterations in CHO cells. Mutat Res. 2008;637(1-2):93-100. https://doi.org/10.1016/j.mrfmmm.2007.07.005
Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160-1166. https://doi.org/10.1126/science.1140321
Sijbers AM, de Laat WL, Ariza RR, et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell. 1996;86(5):811-822. https://doi.org/10.1016/s0092-8674(00)80155-5
Al-Minawi AZ, Saleh-Gohari N, Helleday T. The ERCC1/XPF endonuclease is required for efficient single-strand annealing and gene conversion in mammalian cells. Nucleic Acids Res. 2008;36(1):1-9. https://doi.org/10.1093/nar/gkm888
Lorenzo-González M, Ruano-Ravina A, Torres-Durán M, et al. Residential radon, genetic polymorphisms in DNA damage and repair-related. Lung Cancer. 2019;135:10-15. https://doi.org/10.1016/j.lungcan.2019.07.003
Ren JC, Liu H, Zhang GH, et al. Interaction effects of environmental response gene polymorphisms and benzene exposure on telomere length in shoe-making workers. Chemosphere. 2020;255:126841. https://doi.org/10.1016/j.chemosphere.2020.126841
Matullo G, Dunning AM, Guarrera S, et al. DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis. 2006;27(5):997-1007. https://doi.org/10.1093/carcin/bgi280
Martin LP, Hamilton TC, Schilder RJ. Platinum resistance: the role of DNA repair pathways. Clin Cancer Res. 2008;14(5):1291-1295. https://doi.org/10.1158/1078-0432.CCR-07-2238
Yu T, Xue P, Cui S, et al. Rs3212986 polymorphism, a possible biomarker to predict smoking-related lung cancer, alters DNA repair capacity via regulating ERCC1 expression. Cancer Med. 2018;7(12):6317-6330. https://doi.org/10.1002/cam4.1842
Xiao M, Cui S, Zhang L, et al. AC138128.1 an Intronic lncRNA originating from ERCC1 implies a potential application in lung cancer treatment. J Cancer. 2019;10(16):3608-3617. https://doi.org/10.7150/jca.31832
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol. 2020;104:65-80. https://doi.org/10.1016/j.semcdb.2020.02.003
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675-691. https://doi.org/10.1038/s41576-019-0158-7
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333-338. https://doi.org/10.1038/nature11928
Gao Y, Wang J, Zheng Y, Zhang J, Chen S, Zhao F. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun. 2016;7:12060. https://doi.org/10.1038/ncomms12060
Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH. CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol. 2019;58:90-99. https://doi.org/10.1016/j.semcancer.2018.12.002
Wang J, Li H. CircRNA circ_0067934 silencing inhibits the proliferation, migration and invasion of NSCLC cells and correlates with unfavorable prognosis in NSCLC. Eur Rev Med Pharmacol Sci. 2018;22(10):3053-3060. https://doi.org/10.26355/eurrev_201805_15063
Qiu BQ, Zhang PF, Xiong D, et al. CircRNA fibroblast growth factor receptor 3 promotes tumor progression in non-small cell lung cancer by regulating Galectin-1-AKT/ERK1/2 signaling. J Cell Physiol. 2019;234(7):11256-11264. https://doi.org/10.1002/jcp.27783
Dai X, Zhang N, Cheng Y, et al. RNA-binding protein trinucleotide repeat-containing 6A regulates the formation of circular RNA circ0006916, with important functions in lung cancer cells. Carcinogenesis. 2018;39(8):981-992. https://doi.org/10.1093/carcin/bgy061
Jiang Y, Chen J, Chen X. [Malignant transformation of human bronchial epithelial cells induced by benzo(a)pyrene metabolite dihydroxyepoxy benzo pyrene]. Wei Sheng Yan Jiu. 2001;30(3):129-131.
Wei Y, Li L, Wang D, Zhang CY, Zen K. Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem. 2014;289(15):10270-10275. https://doi.org/10.1074/jbc.C113.541417
Guo X, Zhou Q, Su D, et al. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Mol Cancer. 2020;19(1):83. https://doi.org/10.1186/s12943-020-01196-4
Liu H, Bi J, Dong W, et al. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol Cancer. 2018;17(1):161. https://doi.org/10.1186/s12943-018-0908-8
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284-287. https://doi.org/10.1089/omi.2011.0118
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353-358. https://doi.org/10.1016/j.cell.2011.07.014
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256-264. https://doi.org/10.1038/nsmb.2959
Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428-442. https://doi.org/10.1016/j.molcel.2018.06.034
Volk DE, Thiviyanathan V, Rice JS, et al. Solution structure of a cis-opened (10R)-N6-deoxyadenosine adduct of (9S,10R)-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in a DNA duplex. Biochemistry. 2003;42:1410-1420. https://doi.org/10.1021/bi026745u
Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21(48):7435-7451. https://doi.org/10.1038/sj.onc.1205803
Kiwerska K, Szyfter K. DNA repair in cancer initiation, progression, and therapy-a double-edged sword. J Appl Genet. 2019;60(3-4):329-334. https://doi.org/10.1007/s13353-019-00516-9
Zhang G, Xue P, Cui S, et al. Different splicing isoforms of ERCC1 affect the expression of its overlapping genes CD3EAP and PPP1R13L, and indicate a potential application in non-small cell lung cancer treatment. Int J Oncol. 2018;52(6):2155-2165. https://doi.org/10.3892/ijo.2018.4347
Marrone AK, Beland FA, Pogribny IP. Noncoding RNA response to xenobiotic exposure: an indicator of toxicity and carcinogenicity. Expert Opin Drug Metab Toxicol. 2014;10(10):1409-1422. https://doi.org/10.1517/17425255.2014.954312
Jiang X, Wu X, Chen F, et al. The profiles and networks of miRNA, lncRNA, mRNA, and circRNA in benzo(a)pyrene-transformed bronchial epithelial cells. J Toxicol Sci. 2018;43(4):281-289. https://doi.org/10.2131/jts.43.281
Bach DH, Lee SK, Sood AK. Circular RNAs in Cancer. Mol Ther Nucleic Acids. 2019;16:118-129. https://doi.org/10.1016/j.omtn.2019.02.005
Samanta D, Gonzalez AL, Nagathihalli N, Ye F, Carbone DP, Datta PK. Smoking attenuates transforming growth factor-beta-mediated tumor suppression function through downregulation of Smad3 in lung cancer. Cancer Prev Res (Phila). 2012;5(3):453-463. https://doi.org/10.1158/1940-6207.CAPR-11-0313
Brennan P, Buffler PA, Reynolds P, et al. Secondhand smoke exposure in adulthood and risk of lung cancer among never smokers: a pooled analysis of two large studies. Int J Cancer. 2004;109(1):125-131. https://doi.org/10.1002/ijc.11682
Kim CH, Lee YC, Hung RJ, et al. Exposure to secondhand tobacco smoke and lung cancer by histological type: a pooled analysis of the International Lung Cancer Consortium (ILCCO). Int J Cancer. 2014;135(8):1918-1930. https://doi.org/10.1002/ijc.28835
Hynds RE, Janes SM. Airway basal cell heterogeneity and lung squamous cell carcinoma. Cancer Prev Res (Phila). 2017;10(9):491-493. https://doi.org/10.1158/1940-6207.CAPR-17-0202
Ehrhardt A, Bartels T, Geick A, Klocke R, Paul D, Halter R. Development of pulmonary bronchiolo-alveolar adenocarcinomas in transgenic mice overexpressing murine c-myc and epidermal growth factor in alveolar type II pneumocytes. Br J Cancer. 2001;84(6):813-818. https://doi.org/10.1054/bjoc.2000.1676
Su H, Tao T, Yang Z, et al. Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression. Mol Cancer. 2019;18(1):27. https://doi.org/10.1186/s12943-019-0951-0
Zhang X, Wang S, Wang H, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20. https://doi.org/10.1186/s12943-018-0935-5
Tian W, Wang G, Liu Y, et al. The miR-599 promotes non-small cell lung cancer cell invasion via SATB2. Biochem Biophys Res Commun. 2017;485(1):35-40. https://doi.org/10.1016/j.bbrc.2017.02.005
Wang J, Lu Y, Ding H, et al. The miR-875-5p inhibits SATB2 to promote the invasion of lung cancer cells. Gene. 2018;644:13-19. https://doi.org/10.1016/j.gene.2017.11.066
Ma YN, Zhang HY, Fei LR, et al. SATB2 suppresses non-small cell lung cancer invasiveness by G9a. Clin Exp Med. 2018;18(1):37-44. https://doi.org/10.1007/s10238-017-0464-3
Kucuksayan H, Ozes ON, Akca H. Downregulation of SATB2 is critical for induction of epithelial-to-mesenchymal transition and invasion of NSCLC cells. Lung Cancer. 2016;98:122-129. https://doi.org/10.1016/j.lungcan.2016.05.032
Kucuksayan H, Akca H. The crosstalk between p38 and Akt signaling pathways orchestrates EMT by regulating SATB2 expression in NSCLC cells. Tumour Biol. 2017;39(9):1010428317706212. https://doi.org/10.1177/1010428317706212
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545-15550. https://doi.org/10.1073/pnas.0506580102
Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-273. https://doi.org/10.1038/ng1180
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. https://doi.org/10.1016/j.cell.2011.02.013
Yu L, Lu M, Jia D, et al. Modeling the genetic regulation of cancer metabolism: interplay between glycolysis and oxidative phosphorylation. Cancer Res. 2017;77(7):1564-1574. https://doi.org/10.1158/0008-5472.CAN-16-2074
LeBleu VS, O'Connell JT, Gonzalez Herrera KN, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(10):992-1003. https://doi.org/10.1038/ncb3039
Jiang L, Xiao L, Sugiura H, et al. Metabolic reprogramming during TGFbeta1-induced epithelial-to-mesenchymal transition. Oncogene. 2015;34(30):3908-3916. https://doi.org/10.1038/onc.2014.321
Porporato PE, Payen VL, Pérez-Escuredo J, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8(3):754-766. https://doi.org/10.1016/j.celrep.2014.06.043
De Saedeleer CJ, Copetti T, Porporato PE, Verrax J, Feron O, Sonveaux P. Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PLoS One. 2012;7(10):e46571. https://doi.org/10.1371/journal.pone.0046571
Andrysík Z, Vondráček J, Marvanová S, et al. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons. Mutat Res. 2011;714(1-2):53-62. https://doi.org/10.1016/j.mrfmmm.2011.06.011
Shi L, Zhang B, Sun X, et al. CC chemokine ligand 18(CCL18) promotes migration and invasion of lung cancer cells by binding to Nir1 through Nir1-ELMO1/DOC180 signaling pathway. Mol Carcinog. 2016;55(12):2051-2062. https://doi.org/10.1002/mc.22450
Liang K, Liu Y, Eer D, et al. Chemokine Ligand 16 (CXCL16) Expression Promotes Proliferation and Metastasis of Lung Cancer via Regulating the NF-kappaB Pathway. Med Sci Monit. 2018;24:405-411. https://doi.org/10.12659/msm.906230
Jung YY, Um JY, Narula AS, et al. Identification of matrine as a novel regulator of the CXCR4 signaling axis in tumor cells. Int J Mol Sci. 2020;21(13). https://doi.org/10.3390/ijms21134731
Jäger B, Klatt D, Plappert L, et al. CXCR4/MIF axis amplifies tumor growth and epithelial-mesenchymal interaction in non-small cell lung cancer. Cell Signal. 2020;73:109672. https://doi.org/10.1016/j.cellsig.2020.109672
Li Z, Wang Y, Shen Y, Qian C, Oupicky D, Sun M. Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti-PD-L1 immunotherapy. Sci Adv. 2020;6(20):eaaz9240. https://doi.org/10.1126/sciadv.aaz9240
Lin YS, Tsai KL, Chen JN, Wu CS. Mangiferin inhibits lipopolysaccharide-induced epithelial-mesenchymal transition (EMT) and enhances the expression of tumor suppressor gene PER1 in non-small cell lung cancer cells. Environ Toxicol. 2020;35(10):1070-1081. https://doi.org/10.1002/tox.22943
Liu SH, Huang SF, Hsu YL, Pan SH, Chen YJ, Lin YH. Structure of human collapsin response mediator protein 1: a possible role of its C-terminal tail. Acta Crystallogr F Struct Biol Commun. 2015;71(Pt 8):938-945. https://doi.org/10.1107/S2053230X15009243
Pan SH, Chao YC, Hung PF, et al. The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1. J Clin Invest. 2011;121(8):3189-3205. https://doi.org/10.1172/JCI42975
Cai G, Wu D, Wang Z, et al. Collapsin response mediator protein-1 (CRMP1) acts as an invasion and metastasis suppressor of prostate cancer via its suppression of epithelial-mesenchymal transition and remodeling of actin cytoskeleton organization. Oncogene. 2017;36(4):546-558. https://doi.org/10.1038/onc.2016.227