A process-based approach to understanding and managing triggered seismicity.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
26
03
2020
accepted:
24
05
2021
entrez:
29
7
2021
pubmed:
30
7
2021
medline:
30
7
2021
Statut:
ppublish
Résumé
There is growing concern about seismicity triggered by human activities, whereby small increases in stress bring tectonically loaded faults to failure. Examples of such activities include mining, impoundment of water, stimulation of geothermal fields, extraction of hydrocarbons and water, and the injection of water, CO
Identifiants
pubmed: 34321668
doi: 10.1038/s41586-021-03668-z
pii: 10.1038/s41586-021-03668-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
684-689Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Foulger, G. R., Wilson, M., Gluyas, J., Julian, B. R. & Davies, R. Global review of human-induced earthquakes. Earth Sci. Rev. 178, 438–514 (2018).
doi: 10.1016/j.earscirev.2017.07.008
Baisch, S., Koch, C. & Muntendam-Bos, A. Traffic light systems: to what extent can induced seismicity be controlled? Seismol. Res. Lett. 90, 1145–1154 (2019).
doi: 10.1785/0220180337
Kwiatek, G. et al. Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Sci. Adv. 5, eaav7224 (2019).
pubmed: 31049397
pmcid: 6494490
doi: 10.1126/sciadv.aav7224
Raleigh, C. B., Healy, J. H. & Bredehoeft, J. D. An experiment in earthquake control at Rangely, Colorado. Science 191, 1230–1237 (1976).
pubmed: 17737698
doi: 10.1126/science.191.4233.1230
Improta, L. et al. Reservoir structure and wastewater induced seismicity at the Val d’Agri oilfield (Italy) shown by three-dimensional V
doi: 10.1002/2017JB014725
Buttinelli, M., Improta, L., Bagh, S. & Chiarabba, C. Inversion of inherited thrusts by wastewater injection induced seismicity at the Val d’Agri oilfield (Italy). Sci. Rep. 6, 37165 (2016).
pubmed: 27841336
pmcid: 5107892
doi: 10.1038/srep37165
Cello, G. & Mazzoli, S. Apennine tectonics in southern Italy: a review. J. Geodyn. 27, 191–211 (1998).
doi: 10.1016/S0264-3707(97)00072-0
D’Argenio, B., Pescatore, T. & Scandone, P. Structural pattern of the Campania-Lucania Apennines. Quad. Ric. Sci. 90, 313–327 (1975).
Butler, R. W. H. et al. in Thrust Tectonics and Hydrocarbon Systems: American Association of Petroleum Geologists Memoir 82 (ed. McClay, K. R.) 647–667 (American Association of Petroleum Geologists, 2004).
Valoroso, L. Upper Crustal Structure and Seismotectonics of the Val d’Agri Area, Southern Italy, Through Integration of Local Earthquake and Active Seismic Tomographies, and Geological Mapping. PhD Thesis, Università degli Studi di Napoli Federico II (2007).
Mazzoli, S. et al. Reconstruction of continental margin architecture deformed by the contraction of the Lagonegro Basin, southern Italy. J. Geol. Soc. Lond. 158, 309–319 (2001).
doi: 10.1144/jgs.158.2.309
Shiner, P., Beccaccini, A. & Mazzoli, S. Thin-skinned versus thick-skinned structural models for Apulian carbonate reservoirs: constrains from the Val d’Agri Fields, S Apennines, Italy. Mar. Pet. Geol. 21, 805–827 (2004).
doi: 10.1016/j.marpetgeo.2003.11.020
Malinverno, A. & Ryan, W. B. F. Extension in the Tyrrhenian sea and shortening in the Apennines as a result of arc migration driven by sinking of the lithosphere. Tectonics 5, 227–245 (1986).
doi: 10.1029/TC005i002p00227
Dewey, J. F., Helman, M. L., Turco, E., Hutton, D. W. H. & Knott, S. P. in Alpine Tectonics (eds Coward, M. P., Dietrich, D. & Park, R. G.) Geol. Soc. Special Publication no. 45, 265–283 (Blackwell Scientific, 1989).
Royden, L. H., Patacca, E. & Scandone, P. Segmentation and configuration of subducted lithosphere in Italy: an important control on thrust-belt and foredeep-basin evolution. Geology 15, 714–717 (1987).
doi: 10.1130/0091-7613(1987)15<714:SACOSL>2.0.CO;2
Maschio, L., Ferranti, L. & Burrato, P. Active extension in Val d’Agri area, Southern Apennines, Italy: implications for the geometry of seismogenic belt. Geophys. J. Int. 162, 591–609 (2005).
doi: 10.1111/j.1365-246X.2005.02597.x
Devoti, R., Esposito, A., Pietrantonio, G., Pisani, A. R. & Riguzzi, F. Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. Earth Planet. Sci. Lett. 311, 230–241 (2011).
doi: 10.1016/j.epsl.2011.09.034
Silverii, F., D’Agostino, N., Métois, M., Fiorillo, F. & Ventafridda, G. Transient deformation of karst aquifers due to seasonal and multi-year groundwater variations observed by GPS in Southern Apennines (Italy). J. Geophys. Res. Solid Earth 121, 8315–8337 (2016).
doi: 10.1002/2016JB013361
Albarello, D., Camassi, R. & Rebez, A. Detection of space and time heterogeneity in the completeness level of a seismic catalogue by a robust statistical approach: an application to the Italian area. Bull. Seismol. Soc. Am. 91, 1694–1703 (2001).
doi: 10.1785/0120000058
Stucci, M., Albini, P., Mirto, C. & Rebez, A. Assessing the completeness of Italian historical earthquake data. Ann. Geophys. 47, 659–673 (2004).
Rovida, A. et al. The Italian earthquake catalogue CPTI15. Bull. Earthquake Eng. 18, 2953–2984 (2020).
Valoroso, L. et al. Active faults and induced seismicity in the Val d’Agri area (Southern Apennines, Italy). Geophys. J. Int. 178, 488–502 (2009).
doi: 10.1111/j.1365-246X.2009.04166.x
Telesca, L., Giocoli, A., Lapenna, V. & Stabile, T. A. Robust identification of periodic behavior in the time dynamics of short seismic series: the case of seismicity induced by Pertusillo Lake, southern Italy. Stochastic Environ. Res. Risk Assess. 29, 1437–1446 (2015).
doi: 10.1007/s00477-014-0980-6
Plesch, A. et al. Community fault model (CFM) for southern California. Bull. Seismol. Soc. Am. 97, 1793–1802 (2007).
doi: 10.1785/0120050211
Biot, M. A. General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).
doi: 10.1063/1.1712886
Coussy, O. Mechanics of Porous Continua (Wiley, 1995).
Freed, A. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci. 33, 335–367 (2005).
doi: 10.1146/annurev.earth.33.092203.122505
Hardebeck, J. L., Nazareth, J. J. & Hauksson, E. The static stress change triggering model: constraints from two southern California aftershock sequences. J. Geophys. Res. Solid Earth 103 (B10), 24427–24437 (1998).
doi: 10.1029/98JB00573
Aki, K. Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. Part 2. Estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum. Bull. Earthq. Res. Inst. 44, 73–78 (1966).
Hanks, T. C. & Kanamori, H. A moment magnitude scale. J. Geophys. Res. Solid Earth 84 (B5), 2348–2350 (1979).
doi: 10.1029/JB084iB05p02348
Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).
doi: 10.1146/annurev.earth.26.1.643
Linker, M. F. & Dieterich, J. H. Effects of variable normal stress on rock friction: observations and constitutive equations. J. Geophys. Res. Solid Earth 97 (B4), 4923–4940 (1992).
doi: 10.1029/92JB00017
Dieterich, J. H. Earthquake nucleation on faults with rate- and state-dependent friction. Tectonophysics 211, 115–134 (1992).
doi: 10.1016/0040-1951(92)90055-B
Dieterich, J. H. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. Solid Earth 99, 2601–2618 (1994).
doi: 10.1029/93JB02581
Kaiser, J. Kenntnisse und Folgerungen aus der Messung von Geräuschen bei Zugbeanspruchung von metallischen Werkstoffen. Arch. Für Isenhütten-Wesen 24, 43–45 (1953).
doi: 10.1002/srin.195301381
Alghannam, M. & Juanes, R. Understanding rate effects in injection-induced earthquakes. Nat. Commun. 11, 3053 (2020).
pubmed: 32546793
pmcid: 7298001
doi: 10.1038/s41467-020-16860-y
DISS Working Group. Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas (Istituto Nazionale di Geofisica e Vulcanologia, accessed 2 January 2019); http://diss.rm.ingv.it/diss/
Stabile, T. A. et al. Relationship between seismicity and water level of the Pertusillo reservoir (southern Italy). Boll. Geofis. Teor. Appl. 56, 505–517 (2015).
Ferranti, L., Maschio, L. & Burrato, P. Field Trip Guide to Active Tectonics Studies in the High Agri Valley. http://hdl.handle.net/2122/2749 (Istituto Nazionale di Geofisica e Vulcanologia, 2007).
Stabile, T. A. et al. Evidences of low-magnitude continued reservoir induced seismicity associated with the Pertusillo artificial lake (southern Italy). Bull. Seismol. Soc. Am. 104, 1820–1828 (2014).
doi: 10.1785/0120130333
Aziz, K. & Settari, A. Petroleum Reservoir Simulation (Applied Science, 1979).
INTERSECT User Guide/Technical Description v.2016.2 (Schlumberger, 2016).
Aagaard, B. T., Knepley, M. G. & Williams, C. A. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J. Geophys. Res. Solid Earth 118, 3059–3079 (2013).
doi: 10.1002/jgrb.50217
ABAQUS User Manual v.2019 (Dassault Systèmes, 2017).
Xu, Y., Cavalcante Filho, J. S., Yu, W. & Sepehrnoori, K. Discrete-fracture modeling of complex hydraulic-fracture geometries in reservoir simulators. SPE Reservoir Eval. Eng. 20, 403–422 (2017).
doi: 10.2118/183647-PA
Cosentino, L. Integrated Reservoir Studies (Editions Technip, 2001).
Cucci, L., Pondrelli, S., Frepoli, A., Mariucci, M. T. & Moro, M. Local pattern of stress field and seismogenic sources in Melandro Pergola basin and in Agri valley (Southern Italy). Geophys. J. Int. 156, 575–583 (2004).
doi: 10.1111/j.1365-246X.2004.02161.x
Della Vecchia, G., Pandolfi, A., Musso, G. & Capasso, G. An analytical expression for the determination of in situ stress state from borehole data accounting for breakout size. Int. J. Rock Mech. Min. Sci. 66, 64–68 (2014).
doi: 10.1016/j.ijrmms.2013.12.012
Chiarabba, C., Jovane, L. & Di Stefano, R. A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophys. 395, 251–268 (2005).
doi: 10.1016/j.tecto.2004.09.013
Jha, B. & Juanes, R. Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering. Wat. Resour. Res. 50, 3776–3808 (2014).
doi: 10.1002/2013WR015175
Dieterich, J., Cayol, V. & Okubo, P. The use of earthquake rate changes as a stress meter at Kilauea volcano. Nature 408, 457–460 (2000).
pubmed: 11100724
doi: 10.1038/35044054
Toda, S., Stein, R. S. & Sagiya, T. Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature 419, 58–61 (2002).
pubmed: 12214230
doi: 10.1038/nature00997
Kroll, K. A., Richards‐Dinger, K. B., Dieterich, J. H. & Cochran, E. S. Delayed seismicity rate changes controlled by static stress transfer. J. Geophys. Res. Solid Earth 122, 7951–7965 (2017).
doi: 10.1002/2017JB014227
Helmstetter, A. & Shaw, B. E. Relation between stress heterogeneity and aftershock rate in the rate-and-state model. J. Geophys. Res. 111, B07304 (2006).
Cochran, E. S., Vidale, J. E. & Tanaka, S. Earth tides can trigger shallow thrust fault earthquakes. Science 306, 1164–1166 (2004).
pubmed: 15498971
doi: 10.1126/science.1103961
Parsons, T., Toda, S., Stein, R. S., Barka, A. & Dieterich, J. H. Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation. Science 288, 661–665 (2000).
pubmed: 10784447
doi: 10.1126/science.288.5466.661
Segall, P. & Lu, S. Injection-induced seismicity: poroelastic and earthquake nucleation effects. J. Geophys. Res. 120, 5082–5103 (2015).
doi: 10.1002/2015JB012060