Progressive Brain Degeneration From Subjective Cognitive Decline to Amnestic Mild Cognitive Impairment: Evidence From Large-Scale Anatomical Connection Classification Analysis.
Alzheimer’s disease
amnestic mild cognitive impairment
network
subjective cognitive decline
white matter
Journal
Frontiers in aging neuroscience
ISSN: 1663-4365
Titre abrégé: Front Aging Neurosci
Pays: Switzerland
ID NLM: 101525824
Informations de publication
Date de publication:
2021
2021
Historique:
received:
29
03
2021
accepted:
07
06
2021
entrez:
29
7
2021
pubmed:
30
7
2021
medline:
30
7
2021
Statut:
epublish
Résumé
People with subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) are both at high risk for Alzheimer's disease (AD). Behaviorally, both SCD and aMCI have subjective reports of cognitive decline, but the latter suffers a more severe objective cognitive impairment than the former. However, it remains unclear how the brain develops from SCD to aMCI. In the current study, we aimed to investigate the topological characteristics of the white matter (WM) network that can successfully identify individuals with SCD or aMCI from healthy control (HC) and to describe the relationship of pathological changes between these two stages. To this end, three groups were recruited, including 22 SCD, 22 aMCI, and 22 healthy control (HC) subjects. We constructed WM network for each subject and compared large-scale topological organization between groups at both network and nodal levels. At the network level, the combined network indexes had the best performance in discriminating aMCI from HC. However, no indexes at the network level can significantly identify SCD from HC. These results suggested that aMCI but not SCD was associated with anatomical impairments at the network level. At the nodal level, we found that the short-path length can best differentiate between aMCI and HC subjects, whereas the global efficiency has the best performance in differentiating between SCD and HC subjects, suggesting that both SCD and aMCI had significant functional integration alteration compared to HC subjects. These results converged on the idea that the neural degeneration from SCD to aMCI follows a gradual process, from abnormalities at the nodal level to those at both nodal and network levels.
Identifiants
pubmed: 34322011
doi: 10.3389/fnagi.2021.687530
pmc: PMC8312851
doi:
Types de publication
Journal Article
Langues
eng
Pagination
687530Informations de copyright
Copyright © 2021 Tao, Li, Li, Huang, Shao, Guan and Zhang.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006189
pubmed: 22229116
Neuroimage. 2018 Sep;178:622-637
pubmed: 29870817
Arch Neurol. 1999 Mar;56(3):303-8
pubmed: 10190820
Exp Brain Res. 2003 Apr;149(4):497-504
pubmed: 12677330
Nat Rev Neurosci. 2009 Mar;10(3):186-98
pubmed: 19190637
J Alzheimers Dis. 2013;35(4):751-60
pubmed: 23481685
Aging Dis. 2011 Jan 1;2(1):30-48
pubmed: 21461180
Oncotarget. 2016 Aug 2;7(31):48953-48962
pubmed: 27418146
J Biomed Sci. 2020 Jan 6;27(1):18
pubmed: 31906949
Neurology. 2012 Sep 25;79(13):1332-9
pubmed: 22914828
J Neurosci Methods. 2015 Sep 30;253:170-82
pubmed: 26129743
Int J Neural Syst. 2017 Dec;27(8):1750041
pubmed: 28958179
J Alzheimers Dis. 2015;48(4):987-94
pubmed: 26402108
Alzheimers Dement (Amst). 2018 Dec 14;11:28-35
pubmed: 30581973
Ann Neurol. 2016 Jun;79(6):929-39
pubmed: 27016429
Radiology. 2012 Nov;265(2):518-27
pubmed: 22984189
Dement Geriatr Cogn Dis Extra. 2013 Sep 28;3(1):320-32
pubmed: 24174927
Hum Brain Mapp. 2001 Jan;12(1):1-19
pubmed: 11198101
Neurosci Bull. 2014 Apr;30(2):217-32
pubmed: 24733652
Alzheimers Dement (Amst). 2016 Nov 19;5:43-52
pubmed: 28054027
Neuroimage Clin. 2015 Jun 30;8:660-6
pubmed: 26288751
Eur J Neurol. 2019 May;26(5):800-807
pubmed: 30584694
Clin Neurophysiol. 2019 Oct;130(10):1762-1780
pubmed: 31401485
J Neurosci. 2006 Sep 6;26(36):9162-72
pubmed: 16957073
Brain Res. 2018 Oct 1;1696:81-90
pubmed: 29729253
Neuroimage. 2021 Jan 15;225:117514
pubmed: 33137477
J Neurol Neurosurg Psychiatry. 2002 Jun;72(6):742-6
pubmed: 12023417
Curr Opin Neurol. 2010 Aug;23(4):341-50
pubmed: 20581686
Neuroimage. 2010 Sep;52(3):1059-69
pubmed: 19819337
N Engl J Med. 2012 Aug 30;367(9):795-804
pubmed: 22784036
Radiology. 2018 Jan;286(1):229-238
pubmed: 28799862
J Neurosci. 2009 Dec 16;29(50):15684-93
pubmed: 20016083
Neurobiol Aging. 2020 Feb;86:134-142
pubmed: 31791658
Cereb Cortex. 2020 Jan 10;30(1):326-338
pubmed: 31169867
Neurobiol Aging. 2017 Aug;56:172-179
pubmed: 28552181
Oncotarget. 2016 Aug 23;7(34):54405-54414
pubmed: 27384675
Lancet Neurol. 2010 Jan;9(1):119-28
pubmed: 20083042
Neuroimage. 2012 Feb 1;59(3):2187-95
pubmed: 22008370
Neuropsychol Rev. 2003 Jun;13(2):79-92
pubmed: 12887040
Sci Adv. 2020 Nov 13;6(46):
pubmed: 33188013
PLoS One. 2014 Aug 25;9(8):e106062
pubmed: 25153085
Curr Alzheimer Res. 2020;17(4):373-381
pubmed: 32448103
Neuroimage. 2015 Oct 1;119:103-18
pubmed: 26095088
Front Hum Neurosci. 2013 Feb 21;7:42
pubmed: 23439846
CNS Neurosci Ther. 2015 Oct;21(10):768-75
pubmed: 25864576
Front Neurosci. 2020 Sep 29;14:577887
pubmed: 33132832
Front Aging Neurosci. 2014 May 27;6:98
pubmed: 24904411
Nat Rev Neurosci. 2012 Apr 13;13(5):336-49
pubmed: 22498897
J Alzheimers Dis. 2013;33(3):723-36
pubmed: 23186987
Neuroimage. 2005 Dec;28(4):980-95
pubmed: 16275139
Arch Gen Psychiatry. 2011 Aug;68(8):845-52
pubmed: 21810648
J Neural Eng. 2018 Apr;15(2):026023
pubmed: 29451125
Lancet Neurol. 2020 Mar;19(3):271-278
pubmed: 31958406
J Neurophysiol. 2011 Sep;106(3):1125-65
pubmed: 21653723
Alzheimers Dement. 2012 Oct;8(5 Suppl):S112-21
pubmed: 23021621
Front Neurosci. 2020 Feb 18;14:51
pubmed: 32132892