Efficiency and mechanism of a vermicompost additive in enhancing composting of swine manure.
Bacterial community
Composting
Manure
Metabolic functional genes
Network analysis
Vermicompost
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
received:
20
01
2021
accepted:
17
05
2021
pubmed:
30
7
2021
medline:
15
12
2021
entrez:
29
7
2021
Statut:
ppublish
Résumé
Vermicompost was used as an additive in swine manure composting to investigate the expression of bacterial functional genes on nutrients biotransformation. Three treatments with vermicompost compositions of 10%, 20%, and 30% in swine manure were set up. Raw manure was used as the control. The thermophilic period increased to 12 days, the NH
Identifiants
pubmed: 34322803
doi: 10.1007/s11356-021-14498-x
pii: 10.1007/s11356-021-14498-x
doi:
Substances chimiques
Manure
0
Soil
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
65791-65801Subventions
Organisme : National Natural Science Foundation of China
ID : 31702156
Organisme : Program for Nonferrous Metals Vacuum Metallurgy Innovation Team of Ministry of Science and Technology (CN)
ID : sccxtd-2021-08
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Adhikary S (2012) Vermicompost, the story of organic gold: A review. Agric Sci 3:905–917. https://doi.org/10.4236/as.2012.37110
doi: 10.4236/as.2012.37110
Aira M, Domínguez J (2009) Microbial and nutrient stabilization of two animal manures after the transit through the gut of the earthworm Eisenia fetida (Savigny, 1826). J Hazard Mater 161:1234–1238. https://doi.org/10.1016/j.jhazmat.2008.04.073
doi: 10.1016/j.jhazmat.2008.04.073
Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock Robert R (2011) Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320. https://doi.org/10.1016/j.pedobi.2011.07.005
doi: 10.1016/j.pedobi.2011.07.005
Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JWC, Selvam A (2014) Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour Technol 168:214–221. https://doi.org/10.1016/j.biortech.2014.01.048
doi: 10.1016/j.biortech.2014.01.048
Bremner JM, Mulvaney CS (1982) Nitrogen total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Am. Soc. Agronomy, Madison, Wilcosin, pp 575–624
Chan MT, Selvam A, Wong JWC (2016) Reducing nitrogen loss and salinity of ‘struvite' food waste composting by zeolite amendment. Bioresour Technol 200:838–844. https://doi.org/10.1016/j.biortech.2015.10.093
doi: 10.1016/j.biortech.2015.10.093
Chen Z, Wang Y, Wen Q (2018) Effects of chlortetracycline on the fate of multi-antibiotic resistance genes and the microbial community during swine manure composting. Environ Pollut 237:977–987. https://doi.org/10.1016/j.envpol.2017.11.009
doi: 10.1016/j.envpol.2017.11.009
Chen H, Zhang Y, Awasthi SK, Liu T, Zhang Z, Awasthi MK (2020) Effect of red kaolin on the diversity of functional genes based on Kyoto Encyclopedia of Genes and Genomes pathways during chicken manure composting. Bioresour Technol 311:123584. https://doi.org/10.1016/j.biortech.2020.123584
doi: 10.1016/j.biortech.2020.123584
Das M, Uppal HS, Singh R, Beri S, Mohan KS, Gupta VC, Adholeya A (2011) Co-composting of physic nut (Jatropha curcas) deoiled cake with rice straw and different animal dung. Bioresour Technol 102:6541–6546. https://doi.org/10.1016/j.biortech.2011.03.058
doi: 10.1016/j.biortech.2011.03.058
Edwards CA, Burrows I (1988) The potential of earthworm composts as plant growth media. In: Edward CA, Neuhauser EF (eds) Earthworms in waste and environment management. SPB Academic Press, The Hague, pp 21–32
Ermolaev E, Sundberg C, Pell M, Smårs S, Jönsson H (2019) Effects of moisture on emissions of methane, nitrous oxide and carbon dioxide from food and garden waste composting. J Clean Prod 240:118165. https://doi.org/10.1016/j.jclepro.2019.118165
doi: 10.1016/j.jclepro.2019.118165
Gajalakshmi S, Abbasi SA (2004) Earthworms and vermicomposting. Indian J Biotechnol 3:486–494
Gu WJ, Zhang FB, Xu PZ, Tang SH, Xie KZ, Huang X, Huang QY (2011) Effects of sulphur and Thiobacillus thioparus on cow manure aerobic composting. Bioresour Technol 102:6529–6535. https://doi.org/10.1016/j.biortech.2011.03.049
doi: 10.1016/j.biortech.2011.03.049
Guo A, Gu J, Wang X, Zhang R, Yin Y, Sun W, Tuo X, Zhang L (2017) Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting. Bioresour Technol 244:658–663. https://doi.org/10.1016/j.biortech.2017.08.016
doi: 10.1016/j.biortech.2017.08.016
Harshitha J, Krupanidhi S, Kumar S, Wong J (2016) Design and development of indoor device for recycling of domestic vegetable scrap. Environ Technol 37:326–334. https://doi.org/10.1080/09593330.2015.1069896
doi: 10.1080/09593330.2015.1069896
Jurado M, Lopez MJ, Suarez-Estrella F, Vargas-Garcia MC, Lopez-Gonzalez JA, Moreno J (2014) Exploiting composting biodiversity: study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting. Bioresour Technol 162:283–293. https://doi.org/10.1016/j.biortech.2014.03.145
doi: 10.1016/j.biortech.2014.03.145
Langille M, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes J, Clemente J, Burkepile D, Vega Thurber R, Knight R, Beiko R, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676
doi: 10.1038/nbt.2676
Li R, Wang JJ, Zhang Z, Shen F, Zhang G, Qin R, Li X, Xiao R (2012) Nutrient transformations during composting of pig manure with bentonite. Bioresour Technol 121:362–368. https://doi.org/10.1016/j.biortech.2012.06.065
doi: 10.1016/j.biortech.2012.06.065
Li Y, Wang X, Chen Q, Hou Y, Xia Q, Zhao P (2016) Metabolomics Analysis of the Larval Head of the Silkworm, Bombyx mori. Int J Mol Sci 17:1460. https://doi.org/10.3390/ijms17091460
doi: 10.3390/ijms17091460
Liu L, Wang S, Guo X, Zhao T, Zhang B (2018a) Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. Waste Manag 73:101–112. https://doi.org/10.1016/j.wasman.2017.12.026
doi: 10.1016/j.wasman.2017.12.026
Liu Y, Wang W, Xu J, Xue H, Stanford K, McAllister TA, Xu W (2018b) Evaluation of compost, vegetable and food waste as amendments to improve the composting of NaOH/NaClO contaminated poultry manure. PLoS One 13:e0205112. https://doi.org/10.1371/journal.pone.0205112
doi: 10.1371/journal.pone.0205112
Mao H, Lv Z, Sun H, Li R, Zhai B, Wang Z, Awasthi MK, Wang Q, Zhou L (2018) Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost. Bioresour Technol 258:195–202. https://doi.org/10.1016/j.biortech.2018.02.082
doi: 10.1016/j.biortech.2018.02.082
McKellar ME, Nelson EB (2003) Compost-Induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69:452–460. https://doi.org/10.1128/AEM.69.1.452-460.2003
doi: 10.1128/AEM.69.1.452-460.2003
Meng X, Liu B, Xi C, Luo X, Yuan X, Wang X, Zhu W, Wang H, Cui Z (2018) Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. Bioresour Technol 251:22–30. https://doi.org/10.1016/j.biortech.2017.09.077
doi: 10.1016/j.biortech.2017.09.077
Olli M (2018) The effect of vermicompost on the growth and quality of cress (Lepidium sativum). J Agric Sci 1:25–28. https://doi.org/10.15159/jas.18.02
doi: 10.15159/jas.18.02
Park S, Akira Y, Kogure K (2014) The family Rhodothermaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, Berlin, Heidelberg, pp 849–856. https://doi.org/10.1007/978-3-642-38954-2_141
doi: 10.1007/978-3-642-38954-2_141
Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus. 1:26. https://doi.org/10.1186/2193-1801-1-26
doi: 10.1186/2193-1801-1-26
Qian X, Shen G, Wang Z, Guo C, Liu Y, Lei Z, Zhang Z (2014) Co-composting of livestock manure with rice straw: characterization and establishment of maturity evaluation system. Waste Manag 34:530–535. https://doi.org/10.1016/j.wasman.2013.10.007
doi: 10.1016/j.wasman.2013.10.007
Ren G, Xu X, Qu J, Zhu L, Wang T (2016) Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis. World J Microbiol Biotechnol 32:101. https://doi.org/10.1007/s11274-016-2059-7
doi: 10.1007/s11274-016-2059-7
Sen B, Chandra TS (2009) Do earthworms affect dynamics of functional response and genetic structure of microbial community in a lab-scale composting system? Bioresour Technol 100:804–811. https://doi.org/10.1016/j.biortech.2008.07.047
doi: 10.1016/j.biortech.2008.07.047
Singh A, Singh GS (2017) Vermicomposting: a sustainable tool for environmental equilibria. Environ Qual Manag 27:23–40. https://doi.org/10.1002/tqem.21509
doi: 10.1002/tqem.21509
Soobhany N, Mohee R, Garg VK (2017) Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: a review. Waste Manag 64:51–62. https://doi.org/10.1016/j.wasman.2017.03.003
doi: 10.1016/j.wasman.2017.03.003
Teixeira LM, Merquior VLC (2014) The family Moraxellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, Berlin, Heidelberg, pp 443–476. https://doi.org/10.1007/978-3-642-38922-1_245
doi: 10.1007/978-3-642-38922-1_245
Wang Q, Li R, Cai H, Awasthi MK, Zhang ZQ, Wang JJ, Ali A, Amanullah M (2016) Improving pig manure composting efficiency employing Ca-bentonite. Ecol Eng 87:157–161. https://doi.org/10.1016/j.ecoleng.2015.11.032
doi: 10.1016/j.ecoleng.2015.11.032
Wang T, Cheng L, Zhang W, Xu X, Meng Q, Sun X, Liu H, Li H, Sun Y (2017) Anaerobic ammonium-oxidizing bacteria in cow manure composting. J Microbiol Biotechnol 27:1288–1299. https://doi.org/10.4014/jmb.1702.02065
doi: 10.4014/jmb.1702.02065
Wang K, Mao H, Wang Z, Tian Y (2018) Succession of organics metabolic function of bacterial community in swine manure composting. J Hazard Mater 360:471–480. https://doi.org/10.1016/j.jhazmat.2018.08.032
doi: 10.1016/j.jhazmat.2018.08.032
Wei H, Wang L, Hassan M, Xie B (2018) Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresour Technol 256:333–341. https://doi.org/10.1016/j.biortech.2018.02.050
doi: 10.1016/j.biortech.2018.02.050
Xi B, He X, Dang Q, Yang T, Li M, Wang X, Li D, Tang J (2015) Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting. Bioresour Technol 196:399–405. https://doi.org/10.1016/j.biortech.2015.07.069
doi: 10.1016/j.biortech.2015.07.069
Yang L, Wang X, Cui S, Ren Y, Yu J, Chen N, Xiao Q, Guo L, Wang R (2019) Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5. Bioresour Technol 285:121360. https://doi.org/10.1016/j.biortech.2019.121360
doi: 10.1016/j.biortech.2019.121360
Zhang L, Sun XY (2014) Changes in physical chemical and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour Technol 171:274–284. https://doi.org/10.1016/j.biortech.2014.08.079
doi: 10.1016/j.biortech.2014.08.079
Zhang J, Chen G, Sun H, Zhou S, Zou G (2016) Straw biochar hastens organic matter degradation and produces nutrient-rich compost. Bioresour Technol 200:876–883. https://doi.org/10.1016/j.biortech.2015.11.016
doi: 10.1016/j.biortech.2015.11.016
Zhang N, Chen H, Lyu Y, Wang Y (2019) Nitrogen removal by a metal-resistant bacterium, Pseudomonas putida ZN1, capable of heterotrophic nitrification-aerobic denitrification. J Chem Technol Biotechnol 94:1165–1175. https://doi.org/10.1002/jctb.5863
doi: 10.1002/jctb.5863
Zhang C, Gao Z, Shi W, Li L, Tian R, Huang J, Lin R, Wang B, Zhou B (2020) Material conversion, microbial community composition and metabolic functional succession during green soybean hull composting. Bioresour Technol 316:123823. https://doi.org/10.1016/j.biortech.2020.123823
doi: 10.1016/j.biortech.2020.123823
Zhou G, Xu X, Qiu X, Zhang J (2019) Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresour Technol 272:10–18. https://doi.org/10.1016/j.biortech.2018.09.135
doi: 10.1016/j.biortech.2018.09.135
Zhu L, Zhao Y, Zhang W, Zhou H, Chen X, Li Y, Wei D, Wei Z (2019) Roles of bacterial community in the transformation of organic nitrogen toward enhanced bioavailability during composting with different wastes. Bioresour Technol 285:121326. https://doi.org/10.1016/j.biortech.2019.121326
doi: 10.1016/j.biortech.2019.121326