Nature of dynamic gradients, glass formation, and collective effects in ultrathin freestanding films.
elastic activation
glass transition
interfacial dynamics
nanoconfinement
thin film
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
03 08 2021
03 08 2021
Historique:
entrez:
30
7
2021
pubmed:
31
7
2021
medline:
31
7
2021
Statut:
ppublish
Résumé
Molecular, polymeric, colloidal, and other classes of liquids can exhibit very large, spatially heterogeneous alterations of their dynamics and glass transition temperature when confined to nanoscale domains. Considerable progress has been made in understanding the related problem of near-interface relaxation and diffusion in thick films. However, the origin of "nanoconfinement effects" on the glassy dynamics of thin films, where gradients from different interfaces interact and genuine collective finite size effects may emerge, remains a longstanding open question. Here, we combine molecular dynamics simulations, probing 5 decades of relaxation, and the Elastically Cooperative Nonlinear Langevin Equation (ECNLE) theory, addressing 14 decades in timescale, to establish a microscopic and mechanistic understanding of the key features of altered dynamics in freestanding films spanning the full range from ultrathin to thick films. Simulations and theory are in qualitative and near-quantitative agreement without use of any adjustable parameters. For films of intermediate thickness, the dynamical behavior is well predicted to leading order using a simple linear superposition of thick-film exponential barrier gradients, including a remarkable suppression and flattening of various dynamical gradients in thin films. However, in sufficiently thin films the superposition approximation breaks down due to the emergence of genuine finite size confinement effects. ECNLE theory extended to treat thin films captures the phenomenology found in simulation, without invocation of any critical-like phenomena, on the basis of interface-nucleated gradients of local caging constraints, combined with interfacial and finite size-induced alterations of the collective elastic component of the structural relaxation process.
Identifiants
pubmed: 34326262
pii: 2104398118
doi: 10.1073/pnas.2104398118
pmc: PMC8346796
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Soft Matter. 2020 Jun 7;16(21):5062-5070
pubmed: 32453335
Nat Mater. 2003 Oct;2(10):695-700
pubmed: 14502273
Soft Matter. 2013 Jan 7;9(1):241-254
pubmed: 25328534
Phys Rev Lett. 2011 Dec 2;107(23):235701
pubmed: 22182101
J Chem Phys. 2014 May 28;140(20):204504
pubmed: 24880298
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041808
pubmed: 22181166
J Chem Phys. 2014 May 21;140(19):194506
pubmed: 24852549
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25407-25413
pubmed: 33008880
Annu Rev Phys Chem. 2011;62:65-84
pubmed: 21090966
J Chem Phys. 2017 May 28;146(20):203330
pubmed: 28571332
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10601-10605
pubmed: 28928147
Nat Mater. 2005 Sep;4(9):693-8
pubmed: 16086021
Soft Matter. 2019 Feb 6;15(6):1223-1242
pubmed: 30556082
J Chem Phys. 2008 Dec 21;129(23):234514
pubmed: 19102545
J Chem Phys. 2017 May 28;146(20):203307
pubmed: 28571380
J Phys Chem B. 2014 Jul 31;118(30):9096-103
pubmed: 25046680
Nat Mater. 2013 Feb;12(2):139-44
pubmed: 23291708
Phys Rev Lett. 2020 Jul 31;125(5):058002
pubmed: 32794834
J Chem Phys. 2019 Dec 28;151(24):240901
pubmed: 31893888
J Chem Phys. 2018 Nov 14;149(18):184902
pubmed: 30441931
J Chem Phys. 2019 Jan 28;150(4):044508
pubmed: 30709240
J Am Chem Soc. 2011 Jun 8;133(22):8444-7
pubmed: 21574657
ACS Cent Sci. 2018 Apr 25;4(4):504-511
pubmed: 29721533
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8227-31
pubmed: 26100908
Phys Rev Lett. 2011 Jun 24;106(25):256103
pubmed: 21770657
J Chem Phys. 2014 May 21;140(19):194507
pubmed: 24852550
J Chem Phys. 2015 Dec 28;143(24):244705
pubmed: 26723700
J Chem Phys. 2020 Oct 21;153(15):154901
pubmed: 33092352
J Chem Phys. 2017 Dec 7;147(21):210901
pubmed: 29221396
J Chem Phys. 2015 Sep 21;143(11):111101
pubmed: 26395676