Atomic-scale unveiling of multiphase evolution during hydrated Zn-ion insertion in vanadium oxide.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
29 Jul 2021
29 Jul 2021
Historique:
received:
02
05
2021
accepted:
05
07
2021
entrez:
30
7
2021
pubmed:
31
7
2021
medline:
31
7
2021
Statut:
epublish
Résumé
An initial crystalline phase can transform into another phases as cations are electrochemically inserted into its lattice. Precise identification of phase evolution at an atomic level during transformation is thus the very first step to comprehensively understand the cation insertion behavior and subsequently achieve much higher storage capacity in rechargeable cells, although it is sometimes challenging. By intensively using atomic-column-resolved scanning transmission electron microscopy, we directly visualize the simultaneous intercalation of both H
Identifiants
pubmed: 34326335
doi: 10.1038/s41467-021-24700-w
pii: 10.1038/s41467-021-24700-w
pmc: PMC8322084
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4599Informations de copyright
© 2021. The Author(s).
Références
Langmuir. 2013 Aug 27;29(34):10964-72
pubmed: 23924361
Ultramicroscopy. 2010 Jun;110(7):903-23
pubmed: 20434265
ACS Nano. 2020 Jun 23;14(6):6752-6760
pubmed: 32432458
Nat Mater. 2011 Apr;10(4):278-81
pubmed: 21317899
Chem Commun (Camb). 2018 Apr 26;54(35):4457-4460
pubmed: 29652066
Ultramicroscopy. 2018 Oct;193:1-11
pubmed: 29906518
Nat Commun. 2015 Oct 29;6:8711
pubmed: 26510508
J Phys Condens Matter. 2013 Nov 6;25(44):445008
pubmed: 24100344
Adv Mater. 2012 Jun 26;24(24):3233-8
pubmed: 22588801
Nano Lett. 2018 Feb 14;18(2):1110-1117
pubmed: 29357254
Nat Commun. 2019 Jun 20;10(1):2713
pubmed: 31221958
Nano Lett. 2015 Jan 14;15(1):514-22
pubmed: 25485638
ACS Nano. 2015 Jan 27;9(1):850-9
pubmed: 25565086
Angew Chem Int Ed Engl. 2016 Oct 17;55(43):13499-13503
pubmed: 27527504
Nat Commun. 2017 Sep 1;8(1):405
pubmed: 28864823
Nat Commun. 2014 Mar 27;5:3529
pubmed: 24670975
Adv Mater. 2018 Jun;30(26):e1800762
pubmed: 29761561
Adv Mater. 2019 Nov;31(44):e1904369
pubmed: 31538380
Adv Mater. 2017 Jan;29(1):
pubmed: 27781313
Nature. 2010 Mar 25;464(7288):571-4
pubmed: 20336141
Ultramicroscopy. 2011 Mar;111(4):285-9
pubmed: 21353155
Adv Mater. 2018 Jan;30(1):
pubmed: 29131432
ACS Appl Mater Interfaces. 2017 Dec 13;9(49):42717-42722
pubmed: 29155554
Nat Nanotechnol. 2019 Jun;14(6):602-608
pubmed: 31011218
Nature. 2020 Sep;585(7823):63-67
pubmed: 32879503
Angew Chem Int Ed Engl. 2015 Jun 26;54(27):7963-7
pubmed: 26013702
Angew Chem Int Ed Engl. 2016 Aug 8;55(33):9680-4
pubmed: 27412027
ACS Nano. 2013 Jan 22;7(1):760-7
pubmed: 23237664
Phys Rev Lett. 2012 May 11;108(19):195501
pubmed: 23003054
Adv Sci (Weinh). 2017 Oct 26;4(12):1700465
pubmed: 29270352
Nat Mater. 2017 Aug;16(8):841-848
pubmed: 28628121
Acc Chem Res. 2020 Aug 18;53(8):1660-1671
pubmed: 32709195
Angew Chem Int Ed Engl. 2018 Apr 3;57(15):3943-3948
pubmed: 29432667
Angew Chem Int Ed Engl. 2020 Feb 3;59(6):2273-2278
pubmed: 31743581
Angew Chem Int Ed Engl. 2016 Oct 4;55(41):12768-72
pubmed: 27619012
Nat Commun. 2021 Feb 5;12(1):824
pubmed: 33547273
Angew Chem Int Ed Engl. 2012 Jan 23;51(4):933-5
pubmed: 22170816
ACS Nano. 2014 Dec 23;8(12):12710-6
pubmed: 25415876
Nat Commun. 2017 Nov 10;8(1):1417
pubmed: 29127289
Nano Lett. 2017 May 10;17(5):3126-3132
pubmed: 28394129
Nat Commun. 2018 Apr 25;9(1):1656
pubmed: 29695711
J Am Chem Soc. 2019 Feb 13;141(6):2305-2315
pubmed: 30652858