A hybrid erbium(III)-bacteriochlorin near-infrared probe for multiplexed biomedical imaging.


Journal

Nature materials
ISSN: 1476-4660
Titre abrégé: Nat Mater
Pays: England
ID NLM: 101155473

Informations de publication

Date de publication:
11 2021
Historique:
received: 08 03 2020
accepted: 24 06 2021
pubmed: 31 7 2021
medline: 17 3 2022
entrez: 30 7 2021
Statut: ppublish

Résumé

Spectrally distinct fluorophores are desired for multiplexed bioimaging. In particular, monitoring biological processes in living mammals needs fluorophores that operate in the 'tissue-transparent' near-infrared (NIR) window, that is, between 700 and 1,700 nm. Here we report a fluorophore system based on molecular erbium(III)-bacteriochlorin complexes with large Stokes shift (>750 nm) and narrowband NIR-to-NIR downconversion spectra (full-width at half-maximum ≤ 32 nm). We have found that the fast (2 × 10

Identifiants

pubmed: 34326504
doi: 10.1038/s41563-021-01063-7
pii: 10.1038/s41563-021-01063-7
doi:

Substances chimiques

Fluorescent Dyes 0
Porphyrins 0
bacteriochlorin 0
Erbium 77B218D3YE

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1571-1578

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Han, M., Gao, X., Su, J. Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).
doi: 10.1038/90228
Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).
doi: 10.1126/science.1124618
Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).
doi: 10.1038/nmeth.4403
Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015).
doi: 10.1038/nnano.2015.251
Huang, J. et al. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18, 1133–1143 (2019).
doi: 10.1038/s41563-019-0378-4
Stack, E. C., Wang, C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70, 46–58 (2014).
doi: 10.1016/j.ymeth.2014.08.016
Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363, eaau8302 (2019).
doi: 10.1126/science.aau8302
Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. 22, 317–327 (2019).
doi: 10.1038/s41593-018-0301-3
Abdeladim, L. et al. Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nat. Commun. 10, 1662 (2019).
doi: 10.1038/s41467-019-09552-9
Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).
doi: 10.1038/s41551-016-0010
Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2015).
doi: 10.1038/nmat4476
Hu, Z. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 4, 259–271 (2019).
doi: 10.1038/s41551-019-0494-0
Wang, S. et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10, 1058 (2019).
doi: 10.1038/s41467-019-09043-x
Cosco, E. D. et al. Flavylium polymethine fluorophores for imaging in the near- and shortwave infrared. Angew. Chem. Int. Ed. 56, 13126–13129 (2017).
doi: 10.1002/anie.201706974
Cosco, E. D. et al. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat. Chem. 12, 1123–1130 (2020).
doi: 10.1038/s41557-020-00554-5
Li, Y. et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat. Commun. 11, 1255 (2020).
doi: 10.1038/s41467-020-15095-1
Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).
doi: 10.1038/s41551-017-0056
Zhang, M. et al. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl Acad. Sci. USA 115, 6590–6595 (2018).
doi: 10.1073/pnas.1806153115
Eliseeva, S. V. & Bunzli, J.-C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010).
doi: 10.1039/B905604C
Doffek, C. et al. Understanding the quenching effects of aromatic C–H- and C–D-oscillators in near-IR lanthanoid luminescence. J. Am. Chem. Soc. 134, 16413–16423 (2012).
doi: 10.1021/ja307339f
Ye, H. Q. et al. Organo-erbium systems for optical amplification at telecommunications wavelengths. Nat. Mater. 13, 382–386 (2014).
doi: 10.1038/nmat3910
Mech, A. et al. Sensitized NIR erbium(III) emission in confined geometries: a new strategy for light emitters in telecom applications. J. Am. Chem. Soc. 132, 4574–4576 (2010).
doi: 10.1021/ja907927s
Mancino, G. et al. Dramatic Increases in the lifetime of the Er
doi: 10.1021/ja0441864
Chow, C. Y. et al. Ga
doi: 10.1021/jacs.6b00984
Trivedi, E. R. et al. Highly emitting near-infrared lanthanide ‘encapsulated sandwich’ metallacrown complexes with excitation shifted toward lower energy. J. Am. Chem. Soc. 136, 1526–1534 (2014).
doi: 10.1021/ja4113337
Nonat, A. et al. Room temperature molecular up conversion in solution. Nat. Commun. 7, 11978 (2016).
doi: 10.1038/ncomms11978
Kang, T. S. et al. Near-infrared electroluminescence from lanthanide tetraphenylporphyrin:polystyrene blends. Adv. Mater. 15, 1093–1097 (2003).
doi: 10.1002/adma.200304692
Zhang, J., Badger, P. D., Geib, S. J. & Petoud, S. Sensitization of near-infrared-emitting lanthanide cations in solution by tropolonate ligands. Angew. Chem. Int. Ed. 44, 2508–2512 (2005).
doi: 10.1002/anie.200463081
Artizzu, F., Mercuri, M. L., Serpe, A. & Deplano, P. NIR-emissive erbium–quinolinolate complexes. Coord. Chem. Rev. 255, 2514–2529 (2011).
doi: 10.1016/j.ccr.2011.01.013
Yerushalmi, R., Ashur, I. & Scherz, A. in Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (eds Grimm, B. et al.) 495–506 (Springer Netherlands, 2006).
Hu, J. Y. et al. Highly near-IR emissive ytterbium(III) complexes with unprecedented quantum yields. Chem. Sci. 8, 2702–2709 (2017).
doi: 10.1039/C6SC05021B
Garfield, D. J. et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photonics 12, 402–407 (2018).
doi: 10.1038/s41566-018-0156-x
Yang, E. et al. Photophysical properties and electronic structure of stable, tunable synthetic bacteriochlorins: extending the features of native photosynthetic pigments. J. Phys. Chem. B 115, 10801–10816 (2011).
doi: 10.1021/jp205258s
Yao, Y. et al. Aromaticity versus regioisomeric effect of β-substituents in porphyrinoids. Phys. Chem. Chem. Phys. 21, 10152–10162 (2019).
doi: 10.1039/C9CP01177C
Diao, S. et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Ed. 54, 14758–14762 (2015).
doi: 10.1002/anie.201507473
Zhong, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 8, 737 (2017).
doi: 10.1038/s41467-017-00917-6
Antaris, A. L. et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 8, 15269 (2017).
doi: 10.1038/ncomms15269
Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).
doi: 10.1073/pnas.1718917115
Tian, R. et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci. Adv. 5, eaaw0672 (2019).
doi: 10.1126/sciadv.aaw0672
Pittet, M. J., Garris, C. S., Arlauckas, S. P. & Weissleder, R. Recording the wild lives of immune cells. Sci. Immunol. 3, eaaq0491 (2018).
doi: 10.1126/sciimmunol.aaq0491
Karreman, M. A. et al. Fast and precise targeting of single tumor cells in vivo by multimodal correlative microscopy. J. Cell Sci. 129, 444–456 (2016).
Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).
doi: 10.1038/s41565-018-0221-0
Wang, J. C., Murphy, I. A. & Hanson, K. Modulating electron transfer dynamics at dye–semiconductor interfaces via self-assembled bilayers. J. Phys. Chem. C. 119, 3502–3508 (2015).
doi: 10.1021/jp5116367
Starukhin, A., Gorski, A. & Dobkowski, J. Temperature dependence of singlet oxygen generation by different photosensitizers. EPJ Web Conf. 220, 01012 (2019).
doi: 10.1051/epjconf/201922001012
Hartzler, D. A. et al. Triplet excited state energies and phosphorescence spectra of (bacterio)chlorophylls. J. Phys. Chem. B 118, 7221–7232 (2014).
doi: 10.1021/jp500539w

Auteurs

Ting Wang (T)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.

Shangfeng Wang (S)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China. sfwang@fudan.edu.cn.

Zhiyong Liu (Z)

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.

Zuyang He (Z)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.

Peng Yu (P)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.

Mengyao Zhao (M)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.

Hongxin Zhang (H)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.

Lingfei Lu (L)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.

Zhengxin Wang (Z)

School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China.

Ziyu Wang (Z)

School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China.

Weian Zhang (W)

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People's Republic of China. wazhang@ecust.edu.cn.

Yong Fan (Y)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.

Caixia Sun (C)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.

Dongyuan Zhao (D)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.

Weimin Liu (W)

School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China.

Jean-Claude G Bünzli (JG)

Institut des Sciences Chimiques et Ingénierie, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Fan Zhang (F)

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China. zhang_fan@fudan.edu.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH