The distribution of common-variant effect sizes.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
08 2021
Historique:
received: 16 09 2020
accepted: 23 06 2021
pubmed: 31 7 2021
medline: 11 9 2021
entrez: 30 7 2021
Statut: ppublish

Résumé

The genetic effect-size distribution of a disease describes the number of risk variants, the range of their effect sizes and sample sizes that will be required to discover them. Accurate estimation has been a challenge. Here I propose Fourier Mixture Regression (FMR), validating that it accurately estimates real and simulated effect-size distributions. Applied to summary statistics for ten diseases (average [Formula: see text]), FMR estimates that 100,000-1,000,000 cases will be required for genome-wide significant SNPs to explain 50% of SNP heritability. In such large studies, genome-wide significance becomes increasingly conservative, and less stringent thresholds achieve high true positive rates if confounding is controlled. Across traits, polygenicity varies, but the range of their effect sizes is similar. Compared with effect sizes in the top 10% of heritability, including most discovered thus far, those in the bottom 10-50% are orders of magnitude smaller and more numerous, spanning a large fraction of the genome.

Identifiants

pubmed: 34326547
doi: 10.1038/s41588-021-00901-3
pii: 10.1038/s41588-021-00901-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1243-1249

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).
pmcid: 3912837 doi: 10.1038/nature08185 pubmed: 3912837
Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).
pubmed: 20881960 pmcid: 2955183 doi: 10.1038/nature09410
Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).
pubmed: 28686856 pmcid: 5501872 doi: 10.1016/j.ajhg.2017.06.005
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743 pmcid: 30305743 doi: 10.1038/s41586-018-0579-z
Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).
pubmed: 20562875 pmcid: 3232052 doi: 10.1038/ng.608
Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).
pubmed: 30104762 pmcid: 6128408 doi: 10.1038/s41588-018-0183-z
Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017).
pubmed: 28658209 pmcid: 5511510 doi: 10.1038/nature22969
Ulirsch, J. C. et al. Interrogation of human hematopoiesis at single-cell and single-variant resolution. Nat. Genet. 51, 683–693 (2019).
pubmed: 30858613 pmcid: 6441389 doi: 10.1038/s41588-019-0362-6
Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. B 82, 1273–1300 (2020).
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1335 (2015).
doi: 10.1038/ng.3404
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
pubmed: 29632380 pmcid: 29632380 doi: 10.1038/s41588-018-0081-4
Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).
pmcid: 4295936 pubmed: 4295936
Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).
pubmed: 22446960 pmcid: 6560362 doi: 10.1038/ng.2232
Zhang, Y., Qi, G., Park, J.-H. & Chatterjee, N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018).
pubmed: 30104760
O’Connor, L. J. et al. Extreme polygenicity of complex traits is explained by negative selection. Am. J. Hum. Genet. 105, 456–476 (2019).
pubmed: 31402091 pmcid: 6732528 doi: 10.1016/j.ajhg.2019.07.003
Park, J.-H. et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat. Genet. 42, 570–575 (2010).
pmcid: 4615599 pubmed: 4615599
Palla, L. & Dudbridge, F. A fast method that uses polygenic scores to estimate the variance explained by genome-wide marker panels and the proportion of variants affecting a trait. Am. J. Hum. Genet. 97, 250–259 (2015).
pubmed: 26189816 pmcid: 4573448 doi: 10.1016/j.ajhg.2015.06.005
Zeng, J. et al. Signatures of negative selection in the genetic architecture of human complex traits. Nat. Genet. 50, 746–753 (2018).
pubmed: 29662166 doi: 10.1038/s41588-018-0101-4
Zhu, X. & Stephens, M. Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes. Nat. Commun. 9, 4361 (2018).
pubmed: 30341297 pmcid: 6195536 doi: 10.1038/s41467-018-06805-x
Holland, D. et al. Beyond SNP heritability: polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model. PLoS Genet. 16, e1008612 (2020).
pubmed: 32427991 pmcid: 7272101 doi: 10.1371/journal.pgen.1008612
Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).
pubmed: 4596916 pmcid: 4596916 doi: 10.1016/j.ajhg.2015.09.001
Moser, G. et al. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet. 11, e1004969 (2015).
pubmed: 25849665 pmcid: 4388571 doi: 10.1371/journal.pgen.1004969
Loh, P. R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat. Genet. 47, 1385–1392 (2015).
pubmed: 26523775 pmcid: 4666835 doi: 10.1038/ng.3431
Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the genetic architecture of 30 complex traits from summary association data. Am. J. Hum. Genet. 99, 139–153 (2016).
pubmed: 27346688 pmcid: 5005444 doi: 10.1016/j.ajhg.2016.05.013
Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).
pubmed: 33199916 pmcid: 7710571 doi: 10.1038/s41588-020-00735-5
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 25642630 doi: 10.1038/ng.3211
Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 11, 459–463 (2010).
pubmed: 20548291 pmcid: 2975875 doi: 10.1038/nrg2813
Kong, A. et al. The nature of nurture: effects of parental genotypes. Science 359, 424–428 (2018).
Morris, T. T., Davies, N. M., Hemani, G. & Smith, G. D. Population phenomena inflate genetic associations of complex social traits. Sci. Adv. 6, eaay0328 (2020).
Hormozdiari, F. et al. Widespread allelic heterogeneity in complex traits. Am. J. Hum. Genet. 100, 789–802 (2017).
pubmed: 28475861 pmcid: 5420356 doi: 10.1016/j.ajhg.2017.04.005
Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).
pubmed: 29844615 pmcid: 6050137 doi: 10.1038/s41576-018-0016-z
Nelson, C. P. et al. Genetically determined height and coronary artery disease. N. Engl. J. Med. 372, 1608–1618 (2015).
pubmed: 25853659 pmcid: 4648271 doi: 10.1056/NEJMoa1404881
Palmer, C. & Pe’er, I. Statistical correction of the Winner’s Curse explains replication variability in quantitative trait genome-wide association studies. PLoS Genet. 13, e1006916 (2017).
pubmed: 28715421 pmcid: 5536394 doi: 10.1371/journal.pgen.1006916
Galinsky, K. J. et al. Fast principal-component analysis reveals convergent evolution of ADH1B in Europe and East Asia. Am. J. Hum. Genet. 98, 456–472 (2016).
pubmed: 26924531 pmcid: 4827102 doi: 10.1016/j.ajhg.2015.12.022
Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for biobank-scale datasets. Nat. Genet. 50, 906–908 (2018).
pubmed: 29892013 pmcid: 6309610 doi: 10.1038/s41588-018-0144-6
Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).
pmcid: 4342297 pubmed: 4342297
Turchin, M. C. et al. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nat. Genet. 44, 1015–1019 (2012).
Sohail, M. et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife 8, e39702 (2019).
Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46, 100–106 (2014).
pubmed: 24473328 pmcid: 3989144 doi: 10.1038/ng.2876
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).
pubmed: 11315092 doi: 10.1111/j.0006-341X.1999.00997.x
Stephens, M. False discovery rates: a new deal. Biostatistics 18, 275–294 (2017).
pubmed: 27756721
Zhu, X. & Stephens, M. Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes. Nat. Commun. 9, 4361 (2018).
pubmed: 30341297 pmcid: 6195536 doi: 10.1038/s41467-018-06805-x
Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA 111, E455–E464 (2014).
pubmed: 24443550 pmcid: 3910587 doi: 10.1073/pnas.1322563111
Asgari, S. et al. A positively selected FBN1 missense variant reduces height in Peruvian individuals. Nature 582, 234–239 (2020).
pubmed: 32499652 pmcid: 7410362 doi: 10.1038/s41586-020-2302-0
Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).
pubmed: 30926966 pmcid: 6563838
Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).
Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).
pubmed: 4596916 pmcid: 4596916 doi: 10.1016/j.ajhg.2015.09.001
Chung, W. et al. Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes. Nat. Commun. 10, 569 (2019).
pubmed: 30718517 pmcid: 6361917 doi: 10.1038/s41467-019-08535-0
Chun, S. et al. Non-parametric polygenic risk prediction via partitioned GWAS summary statistics. Am. J. Hum. Genet. 107, 46–59 (2020).
pubmed: 32470373 pmcid: 7332650 doi: 10.1016/j.ajhg.2020.05.004
Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun. 10, 5086 (2019).
pubmed: 31704910 pmcid: 6841727 doi: 10.1038/s41467-019-12653-0
Chen, W., McDonnell, S. K., Thibodeau, S. N., Tillmans, L. S. & Schaid, D. J. Incorporating functional annotations for fine-mapping causal variants in a Bayesian framework using summary statistics. Genetics 204, 933–958 (2016).
pubmed: 27655946 pmcid: 5105870 doi: 10.1534/genetics.116.188953
Kichaev, G. et al. Improved methods for multi-trait fine mapping of pleiotropic risk loci. Bioinformatics 33, 248–255 (2017).
pubmed: 27663501 doi: 10.1093/bioinformatics/btw615
Benner, C., Havulinna, A., Salomaa, V., Ripatti, S. & Pirinen, M. Refining fine-mapping: effect sizes and regional heritability. Preprint at bioRxiv https://doi.org/10.1101/318618 (2018).
Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).
pubmed: 28622505 pmcid: 28622505 doi: 10.1016/j.cell.2017.05.038
Simons, Y. B., Bullaughey, K., Hudson, R. R. & Sella, G. A population genetic interpretation of GWAS findings for human quantitative traits. PLoS Biol. 16, e2002985 (2018).
pubmed: 29547617 pmcid: 5871013 doi: 10.1371/journal.pbio.2002985
Brown, B. C., Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).
pubmed: 27321947 pmcid: 5005434 doi: 10.1016/j.ajhg.2016.05.001
Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat. Genet. 49, 1421–1427 (2017).
pubmed: 28892061 pmcid: 6133304 doi: 10.1038/ng.3954
Speed, D. et al. Reevaluation of SNP heritability in complex human traits. Nat. Genet. 49, 986–992 (2017).
pubmed: 28530675 pmcid: 5493198 doi: 10.1038/ng.3865
Gazal, S., Marquez-Luna, C., Finucane, H. K. & Price, A. L. Reconciling S-LDSC and LDAK functional enrichment estimates. Nat. Genet. 51, 1202–1204 (2019).
pubmed: 31285579 pmcid: 7006477 doi: 10.1038/s41588-019-0464-1
Belmont, J. W. et al. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).
doi: 10.1038/nature04226
Conneely, K. N. & Boehnke, M. So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests. Am. J. Hum. Genet. 81, 1158–1168 (2007).
pubmed: 17966093 pmcid: 2276357 doi: 10.1086/522036
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
O’Connor, L. J. lukejoconnor/FMR: initial release of FMR software. Zenodo https://doi.org/10.5281/zenodo.4670516 (2021).

Auteurs

Luke J O'Connor (LJ)

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. loconnor@broadinstitute.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH