Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates.

Adsorption mechanism Co-pyrolysis of biomass Heavy metal removal Soil remediation Synergy Wastewater treatment

Journal

Journal of hazardous materials
ISSN: 1873-3336
Titre abrégé: J Hazard Mater
Pays: Netherlands
ID NLM: 9422688

Informations de publication

Date de publication:
15 10 2021
Historique:
received: 24 02 2021
revised: 25 06 2021
accepted: 13 07 2021
pubmed: 31 7 2021
medline: 26 10 2021
entrez: 30 7 2021
Statut: ppublish

Résumé

Heavy metal pollution has been considered as a serious threat to the environment and human in the past decades due to its toxic and unbiodegradable properties. Recently, extensive studies have been carried out on the removal of heavy metals, and various adsorption materials have been successfully developed. Among, biochar is a promising option because of its advantages of various biomass sources, abundant microporous channels and surface functional groups, as well as its attractive economic feasibility. However, the application of pristine biochar is limited by its low adsorption capacity and nonregenerative property. Co-pyrolysis biochar, produced from the pyrolysis of biomass with the addition of another biomass or non-biomass precursor, is potential in overcoming the limitation of pristine biochar and achieving superior performance for heavy metal adsorption and immobilization. Therefore, this article summarizes the recent advances in development and applications of co-pyrolysis biochar for adsorption and immobilization of various heavy metals in contaminated environmental substrates. In details, the production, characteristics and advantages of co-pyrolysis biochar are initially presented. Subsequently, the adsorption behaviors and mechanisms of different heavy metals (including Hg, Zn, Pb, Cu, Cd, Cr, As, etc.) in flue gas and wastewater by co-pyrolysis biochar are reviewed, as well as factors influencing their adsorption capacities. Meanwhile, the immobilization of heavy metals in both biochar itself and contaminated soils by co-pyrolysis biochar is discussed. Finally, the limitations of current studies and future prospects are proposed. It aims at providing a guideline for the exploitation and application of cost-effective and environmental-friendly co-pyrolysis biochar in the decontamination of environmental substrates.

Identifiants

pubmed: 34329082
pii: S0304-3894(21)01620-4
doi: 10.1016/j.jhazmat.2021.126655
pii:
doi:

Substances chimiques

Metals, Heavy 0
Soil 0
Soil Pollutants 0
biochar 0
Charcoal 16291-96-6

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

126655

Informations de copyright

Copyright © 2021 Elsevier B.V. All rights reserved.

Auteurs

Yuanling Li (Y)

MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Centre for Cleaner Technology of Iron-steel Industry, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China.

Han Yu (H)

MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Centre for Cleaner Technology of Iron-steel Industry, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China.

Lina Liu (L)

MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Centre for Cleaner Technology of Iron-steel Industry, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China. Electronic address: liuln@nankai.edu.cn.

Hongbing Yu (H)

MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Centre for Cleaner Technology of Iron-steel Industry, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China. Electronic address: hongbingyu1130@sina.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH