Modeling of DNA binding to the condensin hinge domain using molecular dynamics simulations guided by atomic force microscopy.
Adenosine Triphosphatases
/ chemistry
Binding Sites
Computational Biology
Computer Simulation
DNA, Fungal
/ chemistry
DNA-Binding Proteins
/ chemistry
Microscopy, Atomic Force
Models, Biological
Models, Molecular
Molecular Dynamics Simulation
Multiprotein Complexes
/ chemistry
Protein Conformation
Protein Interaction Domains and Motifs
Saccharomyces cerevisiae Proteins
/ chemistry
Static Electricity
Journal
PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
06
05
2021
accepted:
10
07
2021
revised:
11
08
2021
pubmed:
31
7
2021
medline:
26
10
2021
entrez:
30
7
2021
Statut:
epublish
Résumé
The condensin protein complex compacts chromatin during mitosis using its DNA-loop extrusion activity. Previous studies proposed scrunching and loop-capture models as molecular mechanisms for the loop extrusion process, both of which assume the binding of double-strand (ds) DNA to the hinge domain formed at the interface of the condensin subunits Smc2 and Smc4. However, how the hinge domain contacts dsDNA has remained unknown. Here, we conducted atomic force microscopy imaging of the budding yeast condensin holo-complex and used this data as basis for coarse-grained molecular dynamics simulations to model the hinge structure in a transient open conformation. We then simulated the dsDNA binding to open and closed hinge conformations, predicting that dsDNA binds to the outside surface when closed and to the outside and inside surfaces when open. Our simulations also suggested that the hinge can close around dsDNA bound to the inside surface. Based on these simulation results, we speculate that the conformational change of the hinge domain might be essential for the dsDNA binding regulation and play roles in condensin-mediated DNA-loop extrusion.
Identifiants
pubmed: 34329301
doi: 10.1371/journal.pcbi.1009265
pii: PCOMPBIOL-D-21-00831
pmc: PMC8357123
doi:
Substances chimiques
DNA, Fungal
0
DNA-Binding Proteins
0
Multiprotein Complexes
0
Saccharomyces cerevisiae Proteins
0
condensin complexes
0
Adenosine Triphosphatases
EC 3.6.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1009265Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Curr Genet. 2018 Feb;64(1):109-116
pubmed: 28835994
Nature. 2020 Mar;579(7799):438-442
pubmed: 32132705
Science. 2019 Dec 13;366(6471):1338-1345
pubmed: 31753851
Science. 2018 Feb 9;359(6376):
pubmed: 29348367
J Chem Theory Comput. 2020 Feb 11;16(2):1349-1358
pubmed: 31909999
Nat Struct Mol Biol. 2020 Aug;27(8):743-751
pubmed: 32661420
Science. 2017 Jun 23;356(6344):1284-1287
pubmed: 28522692
J Cell Biol. 2002 Feb 4;156(3):419-24
pubmed: 11815634
Structure. 2017 Apr 4;25(4):603-616.e4
pubmed: 28286005
Nat Cell Biol. 2015 Aug;17(8):1014-23
pubmed: 26075356
Nature. 2010 Nov 4;468(7320):72-6
pubmed: 20935627
Science. 2020 Jun 26;368(6498):1454-1459
pubmed: 32409525
Cell Rep. 2016 Mar 1;14(8):1813-8
pubmed: 26904946
Nucleic Acids Res. 2019 Jul 26;47(13):6956-6972
pubmed: 31175837
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1468-1477
pubmed: 31888987
Mol Cell. 2019 Jul 25;75(2):209-223.e6
pubmed: 31201090
Elife. 2020 May 12;9:
pubmed: 32396063
Proteins. 2011 Feb;79(2):558-68
pubmed: 21117236
Annu Rev Biophys. 2019 May 6;48:275-296
pubmed: 30857399
J Biol Chem. 2015 Dec 4;290(49):29461-77
pubmed: 26491021
Cell. 2017 Oct 19;171(3):588-600.e24
pubmed: 28988770
Acc Chem Res. 2015 Dec 15;48(12):3026-35
pubmed: 26575522
J Chem Phys. 2014 Oct 28;141(16):165103
pubmed: 25362344
Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17957-62
pubmed: 22003125
J Chem Theory Comput. 2018 Mar 13;14(3):1682-1694
pubmed: 29397721
J Chem Theory Comput. 2014 Feb 11;10(2):711-21
pubmed: 26580048
Nucleic Acids Res. 2010 Jun;38(10):3454-65
pubmed: 20139420
EMBO J. 2002 Nov 1;21(21):5733-44
pubmed: 12411491
J Struct Biol. 2004 Sep;147(3):315-26
pubmed: 15450300
Biophys Rev. 2018 Apr;10(2):285-292
pubmed: 29256119
Trends Cell Biol. 2019 Sep;29(9):717-726
pubmed: 31230958
Nucleic Acids Res. 2011 Apr;39(7):2483-91
pubmed: 21071403
J Phys Chem B. 2013 Oct 24;117(42):13005-14
pubmed: 23668488
Mol Cell. 2003 Mar;11(3):571-5
pubmed: 12667442
Mol Cell. 2015 Jan 22;57(2):290-303
pubmed: 25557547
Mol Cell. 2019 Jun 20;74(6):1175-1188.e9
pubmed: 31226277
EMBO J. 2001 Jun 15;20(12):3238-50
pubmed: 11406600
Curr Biol. 2018 Nov 5;28(21):R1266-R1281
pubmed: 30399354
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17789-94
pubmed: 22753508
Science. 2017 Nov 3;358(6363):672-676
pubmed: 28882993
Science. 2018 Apr 6;360(6384):102-105
pubmed: 29472443
Mol Cell. 2017 Jul 20;67(2):334-347.e5
pubmed: 28689660
Nat Struct Mol Biol. 2020 Dec;27(12):1134-1141
pubmed: 32989304
Mol Cell. 2006 Jan 20;21(2):175-86
pubmed: 16427008
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11911-11916
pubmed: 30385633
J Chem Theory Comput. 2011 Jun 14;7(6):1979-89
pubmed: 26596457
Science. 2013 Nov 22;342(6161):948-53
pubmed: 24200812