Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
21
12
2020
accepted:
15
06
2021
entrez:
31
7
2021
pubmed:
1
8
2021
medline:
16
4
2022
Statut:
epublish
Résumé
The effects of climate change on species richness are debated but can be informed by the past. Here, we generated a sedimentary ancient DNA dataset covering 10 lakes and applied novel methods for data harmonization. We assessed the impact of Holocene climate changes and nutrients on terrestrial plant richness in northern Fennoscandia. We find that richness increased steeply during the rapidly warming Early Holocene. In contrast to findings from most pollen studies, we show that richness continued to increase thereafter, although the climate was stable, with richness and the regional species pool only stabilizing during the past three millennia. Furthermore, overall increases in richness were greater in catchments with higher soil nutrient availability. We suggest that richness will increase with ongoing warming, especially at localities with high nutrient availability and assuming that human activity remains low in the region, although lags of millennia may be expected.
Identifiants
pubmed: 34330702
pii: 7/31/eabf9557
doi: 10.1126/sciadv.abf9557
pmc: PMC8324056
pii:
doi:
Substances chimiques
DNA, Ancient
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Références
New Phytol. 2017 May;214(3):924-942
pubmed: 28370025
Nucleic Acids Res. 2007;35(3):e14
pubmed: 17169982
Nature. 2018 Jan 31;554(7690):92-96
pubmed: 29388952
Nature. 2004 Sep 9;431(7005):147-51
pubmed: 15356621
Curr Biol. 2019 Sep 9;29(17):2905-2911.e2
pubmed: 31422880
PLoS One. 2012;7(12):e51624
pubmed: 23240048
PLoS One. 2015 Jan 30;10(1):e0115335
pubmed: 25635852
Cold Spring Harb Perspect Biol. 2013 Jul 01;5(7):
pubmed: 23729639
Mol Ecol Resour. 2016 Jan;16(1):176-82
pubmed: 25959493
Ecol Evol. 2017 Mar 22;7(7):2449-2460
pubmed: 28405308
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 16;375(1794):20190106
pubmed: 31983333
PLoS One. 2018 Apr 17;13(4):e0195403
pubmed: 29664954
Sci Rep. 2019 Dec 23;9(1):19613
pubmed: 31873100
Science. 2020 Aug 28;369(6507):
pubmed: 32855310
Nature. 2015 Apr 2;520(7545):45-50
pubmed: 25832402
Sci Rep. 2019 Oct 11;9(1):14676
pubmed: 31604959
Nature. 2014 Feb 6;506(7486):47-51
pubmed: 24499916
Nat Commun. 2020 Jul 13;11(1):3486
pubmed: 32661354
BMC Genomics. 2010 Jul 16;11:434
pubmed: 20637073
Mol Ecol. 2015 Apr;24(7):1485-98
pubmed: 25735209
Mol Ecol Resour. 2010 Nov;10(6):1009-18
pubmed: 21565110
Nature. 2021 Mar;591(7849):265-269
pubmed: 33597750
Nat Ecol Evol. 2020 Aug;4(8):1044-1059
pubmed: 32451428
Nature. 2001 Apr 12;410(6830):771-2
pubmed: 11298436
Nat Commun. 2019 Nov 28;10(1):5422
pubmed: 31780647
New Phytol. 2017 Jan;213(2):929-941
pubmed: 27678125
Plants (Basel). 2020 Apr 01;9(4):
pubmed: 32244605
Nature. 2018 Oct;562(7725):57-62
pubmed: 30258229