Predicting non-state terrorism worldwide.


Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
Jul 2021
Historique:
received: 07 01 2021
accepted: 15 06 2021
entrez: 31 7 2021
pubmed: 1 8 2021
medline: 1 8 2021
Statut: epublish

Résumé

Several thousand people die every year worldwide because of terrorist attacks perpetrated by non-state actors. In this context, reliable and accurate short-term predictions of non-state terrorism at the local level are key for policy makers to target preventative measures. Using only publicly available data, we show that predictive models that include structural and procedural predictors can accurately predict the occurrence of non-state terrorism locally and a week ahead in regions affected by a relatively high prevalence of terrorism. In these regions, theoretically informed models systematically outperform models using predictors built on past terrorist events only. We further identify and interpret the local effects of major global and regional terrorism drivers. Our study demonstrates the potential of theoretically informed models to predict and explain complex forms of political violence at policy-relevant scales.

Identifiants

pubmed: 34330703
pii: 7/31/eabg4778
doi: 10.1126/sciadv.abg4778
pmc: PMC8324061
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Références

Biochim Biophys Acta. 1975 Oct 20;405(2):442-51
pubmed: 1180967
BMC Genomics. 2020 Jan 2;21(1):6
pubmed: 31898477
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16384-9
pubmed: 24062433
Science. 2017 Feb 3;355(6324):474-476
pubmed: 28154047
Nature. 2018 Jan 18;553(7688):333-336
pubmed: 29320477
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3510-7
pubmed: 16473945
Science. 2017 Jan 27;355(6323):352-354
pubmed: 28126773
PLoS One. 2015 Mar 04;10(3):e0118432
pubmed: 25738806
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12414-9
pubmed: 22802667
Popul Space Place. 2008 May;14(3):209-229
pubmed: 22962545
PLoS One. 2017 Jun 7;12(6):e0179057
pubmed: 28591138
J Conflict Resolut. 2016 Mar;60(2):195-225
pubmed: 28579636
Science. 2007 Sep 14;317(5844):1540-4
pubmed: 17872443

Auteurs

Andre Python (A)

Center for Data Science, Zhejiang University, Hangzhou, P.R. China. apython@zju.edu.cn.
Li Ka Shing Centre for Health Information and Discovery, Oxford University, Nuffield Department of Medicine, Big Data Institute, Oxford, UK.

Andreas Bender (A)

Department of Statistics, LMU Munich, Munich, Germany.

Anita K Nandi (AK)

Li Ka Shing Centre for Health Information and Discovery, Oxford University, Nuffield Department of Medicine, Big Data Institute, Oxford, UK.

Penelope A Hancock (PA)

Li Ka Shing Centre for Health Information and Discovery, Oxford University, Nuffield Department of Medicine, Big Data Institute, Oxford, UK.

Rohan Arambepola (R)

Li Ka Shing Centre for Health Information and Discovery, Oxford University, Nuffield Department of Medicine, Big Data Institute, Oxford, UK.

Jürgen Brandsch (J)

Bonn International Center for Conversion (BICC), Bonn, Germany.

Tim C D Lucas (TCD)

School of Public Health, Imperial College London, London, UK.

Classifications MeSH