Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice.
electromagnetic radiation
mouse model
public health
sleep
wireless signal
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
03 08 2021
03 08 2021
Historique:
entrez:
31
7
2021
pubmed:
1
8
2021
medline:
15
12
2021
Statut:
ppublish
Résumé
Electromagnetic radiation (EMR) in the environment has increased sharply in recent decades. The effect of environmental EMR on living organisms remains poorly characterized. Here, we report the impact of wireless-range EMR on the sleep architecture of mouse. Prolonged exposure to 2.4-GHz EMR modulated by 100-Hz square pulses at a nonthermal output level results in markedly increased time of wakefulness in mice. These mice display corresponding decreased time of nonrapid eye movement (NREM) and rapid eye movement (REM). In contrast, prolonged exposure to unmodulated 2.4-GHz EMR at the same time-averaged output level has little impact on mouse sleep. These observations identify alteration of sleep architecture in mice as a specific physiological response to prolonged wireless-range EMR exposure.
Identifiants
pubmed: 34330835
pii: 2105838118
doi: 10.1073/pnas.2105838118
pmc: PMC8346830
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2021 the Author(s). Published by PNAS.
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Neurobiol Learn Mem. 2011 Nov;96(4):564-82
pubmed: 21875679
Cancer Epidemiol Biomarkers Prev. 2016 Jan;25(1):16-27
pubmed: 26667886
Bioelectromagnetics. 2011 Jan;32(1):4-14
pubmed: 20857453
Neuropsychobiology. 1996;33(1):41-7
pubmed: 8821374
Psychol Med. 2013 May;43(5):897-910
pubmed: 22781489
Neuropsychobiology. 2000;42(4):207-12
pubmed: 11096337
Neurosci Lett. 1999 Nov 19;275(3):207-10
pubmed: 10580711
Health Phys. 2020 May;118(5):483-524
pubmed: 32167495
Environ Sci Pollut Res Int. 2013 May;20(5):2735-46
pubmed: 23143821
Lancet Oncol. 2011 Jul;12(7):624-6
pubmed: 21845765
IEEE Trans Biomed Eng. 2013 Jun;60(6):1702-10
pubmed: 23358937
Toxicol Sci. 2018 Feb 1;161(2):349-374
pubmed: 29069439
Annu Rev Neurosci. 2019 Jul 8;42:27-46
pubmed: 30699051
Neuroreport. 2007 May 28;18(8):803-7
pubmed: 17471070
J Sleep Res. 2002 Dec;11(4):289-95
pubmed: 12464096
Sleep Med Rev. 2019 Oct;47:28-38
pubmed: 31252334
Neurochem Int. 2019 Sep;128:1-13
pubmed: 30954502
Neuroreport. 2000 Oct 20;11(15):3321-5
pubmed: 11059895
Prog Brain Res. 2010;185:105-29
pubmed: 21075236
Environ Res. 2018 Aug;165:496-503
pubmed: 29530389
Clin Biochem. 2018 Dec;62:2-10
pubmed: 29555319
Environ Res. 2019 Aug;175:274-286
pubmed: 31146099
Bioelectromagnetics. 2007 May;28(4):316-25
pubmed: 17216609
Brain Stimul. 2013 Sep;6(5):805-11
pubmed: 23482083
Australas Phys Eng Sci Med. 2007 Dec;30(4):274-80
pubmed: 18274067
Science. 2018 Oct 26;362(6413):429-434
pubmed: 30361367
Bioelectromagnetics. 2015 Sep;36(6):480-4
pubmed: 26179386
J Sleep Res. 2007 Sep;16(3):253-8
pubmed: 17716273
J Adv Res. 2013 Mar;4(2):181-7
pubmed: 25685416
J Sleep Res. 2012 Feb;21(1):50-8
pubmed: 21489004
Nat Hum Behav. 2021 Jan;5(1):113-122
pubmed: 33199855
Environ Pollut. 2020 Jan;256:113461
pubmed: 31706765
J Neurosci. 2015 Oct 14;35(41):13889-95
pubmed: 26468189
Nature. 2016 Oct 05;538(7623):51-59
pubmed: 27708309
Environ Res. 2016 Feb;145:50-60
pubmed: 26618505
Int J Hyg Environ Health. 2020 Jul;228:113550
pubmed: 32408065
Environ Mol Mutagen. 2020 Feb;61(2):276-290
pubmed: 31633839
Environ Int. 2018 Dec;121(Pt 1):297-307
pubmed: 30227317