Effects of growth hormone-releasing hormone receptor antagonist MIA-602 in mice with emotional disorders: a potential treatment for PTSD.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
12 2021
Historique:
received: 05 05 2021
accepted: 01 07 2021
revised: 30 06 2021
pubmed: 1 8 2021
medline: 15 3 2022
entrez: 31 7 2021
Statut: ppublish

Résumé

Anxiety and depression have been suggested to increase the risk for post-traumatic stress disorders (PTSD). A link between all these mental illnesses, inflammation and oxidative stress is also well established. Recent behavior studies by our group clearly demonstrate a powerful anxiolytic and antidepressant-like effects of a novel growth hormone releasing hormone (GHRH) antagonist of MIAMI class, MIA-690, probably related to modulatory effects on the inflammatory and oxidative status. In the present work we investigated the potential beneficial effects of MIA-602, another recently developed GHRH antagonist, in mood disorders, as anxiety and depression, and the possible brain pathways involved in its protective activity, in adult mice. MIA-602 exhibited antinflammatory and antioxidant effects in ex vivo and in vivo experimental models, inducing anxiolytic and antidepressant-like behavior in mice subcutaneously treated for 4 weeks. The beneficial effect of MIA-602 on inflammatory and oxidative status and synaptogenesis resulting in anxiolytic and antidepressant-like effects could be related by increases of nuclear factor erythroid 2-related factor 2 (Nrf2) and of brain-derived neurotrophic factor (BDNF) signaling pathways in the hippocampus and prefrontal cortex. These results strongly suggest that GHRH analogs should be tried clinically for the treatment of mood disorders including PTSD.

Identifiants

pubmed: 34331008
doi: 10.1038/s41380-021-01228-5
pii: 10.1038/s41380-021-01228-5
doi:

Substances chimiques

Brain-Derived Neurotrophic Factor 0
GHRH(1-29)NH2, (PhAc-Ada)(0)-Tyr(1), Arg(2), Fpa(5,6), Ala(8), Har(9), Tyr(Me)(10), His(11), Orn(12,) Abu(15), His(20), Orn(21), Nle(27), Arg(28), Har(29)- 0
Receptors, Neuropeptide 0
Receptors, Pituitary Hormone-Regulating Hormone 0
Sermorelin 86168-78-7
somatotropin releasing hormone receptor F8L0ODC9D7

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

7465-7474

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry. 2005;62:617–27.
pubmed: 15939839 pmcid: 2847357 doi: 10.1001/archpsyc.62.6.617
Kalin NH. The critical relationship between anxiety and depression. Am J Psychiatry. 2020;177:365–7.
pubmed: 32354270 doi: 10.1176/appi.ajp.2020.20030305
Kessler RC, Sampson NA, Berglund P, Gruber MJ, Al-Hamzawi A, Andrade L, et al. Anxious and non-anxious major depressive disorder in the World Health Organization World Mental Health Surveys. Epidemiol Psychiatr Sci. 2015;24:210–26.
pubmed: 25720357 pmcid: 5129607 doi: 10.1017/S2045796015000189
Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995;52:1048–60.
doi: 10.1001/archpsyc.1995.03950240066012
Dunner DL. Management of anxiety disorders: the added challenge of comorbidity. Depress Anxiety. 2001;13:57–71.
pubmed: 11301922 doi: 10.1002/da.1018
Dold M, Bartova L, Souery D, Mendlewicz J, Serretti A, Porcelli S, et al. Clinical characteristics and treatment outcomes of patients with major depressive disorder and comorbid anxiety disorders: results from a European multicenter study. J Psychiatr Res. 2017;91:1–13.
pubmed: 28284107 doi: 10.1016/j.jpsychires.2017.02.020
Tamagno G, Epelbaum J. Editorial: neurological and psychiatric disorders in endocrine diseases. Front Endocrinol (Lausanne). 2015;6:101.
Kokshoorn NE, Biermasz NR, Roelfsema F, Smit JW, Pereira AM, Romijn JA. GH replacement therapy in elderly GH-deficient patients: a systematic review. Eur J Endocrinol. 2011;164:657–65.
pubmed: 21339335 doi: 10.1530/EJE-10-1170
Prodam F, Caputo M, Belcastro S, Garbaccio V, Zavattaro M, Samà MT, et al. Quality of life, mood disturbances and psychological parameters in adult patients with GH deficiency. Panminerva Med. 2012;54:323–31.
pubmed: 23123585
Recinella L, Chiavaroli A, Orlando G, Ferrante C, Marconi GD, Gesmundo I, et al. Antinflammatory, antioxidant, and behavioral effects induced by administration of growth hormone-releasing hormone analogs in mice. Sci Rep. 2020;10:4850.
pubmed: 32161298 pmcid: 7066124 doi: 10.1038/s41598-020-61185-x
Engin E, Stellbrink J, Treit D, Dickson CT. Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. Neuroscience. 2008;157:666–76.
pubmed: 18940236 doi: 10.1016/j.neuroscience.2008.09.037
Yeung M, Treit D. The anxiolytic effects of somatostatin following intra-septal and intra-amygdalar microinfusions are reversed by the selective sst2 antagonist PRL2903. Pharm Biochem Behav. 2012;101:88–92.
doi: 10.1016/j.pbb.2011.12.012
Leone S, Shohreh R, Manippa F, Recinella L, Ferrante C, Orlando G, et al. Behavioural phenotyping of male growth hormone-releasing hormone (GHRH) knockout mice. Growth Horm IGF Res. 2014;24:192–7.
pubmed: 25028079 doi: 10.1016/j.ghir.2014.06.004
Schally AV, Zhang X, Cai R, Hare JM, Granata R, Bartoli M. Actions and potential therapeutic applications of growth hormone-releasing hormone agonists. Endocrinology. 2019;160:1600–12.
pubmed: 31070727 doi: 10.1210/en.2019-00111
Villanova T, Gesmundo I, Audrito V, Vitale N, Silvagno F, Musuraca C, et al. Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of human malignant pleural mesothelioma. Proc Natl Acad Sci USA. 2019;116:2226–31.
pubmed: 30659154 pmcid: 6369772 doi: 10.1073/pnas.1818865116
Zarandi M, Cai R, Kovacs M, Popovics P, Szalontay L, Cui T, et al. Synthesis and structure-activity studies on novel analogs of human growth hormone releasing hormone (GHRH) with enhanced inhibitory activities on tumor growth. Peptides. 2017;89:60–70.
pubmed: 28130121 doi: 10.1016/j.peptides.2017.01.009
Recinella L, Chiavaroli A, Orlando G, Menghini L, Ferrante C, Di Cesare ML. et al. Protective effects induced by two polyphenolic liquid complexes from olive (Olea europaea, mainly Cultivar Coratina) pressing juice in rat isolated tissues challenged with LPS. Molecules. 2019;24:E3002.
pubmed: 31430921 doi: 10.3390/molecules24163002
Ferrante C, Orlando G, Recinella L, Leone S, Chiavaroli A, Di Nisio C, et al. Central apelin-13 administration modulates hypothalamic control of feeding. J Biol Regul Homeost Agents. 2016;30:883–8.
pubmed: 27655516
Recinella L, Shohreh R, Salvatori R, Orlando G, Vacca M, Brunetti L. Effects of isolated GH deficiency on adipose tissue, feeding and adipokines in mice. Growth Horm IGF Res. 2013;23:237–42.
pubmed: 24021480 doi: 10.1016/j.ghir.2013.08.004
Leone S, Chiavaroli A, Shohreh R, Ferrante C, Ricciuti A, Manippa F, et al. Increased locomotor and thermogenic activity in mice with targeted ablation of the GHRH gene. Growth Horm IGF Res. 2015;25:80–4.
pubmed: 25588992 doi: 10.1016/j.ghir.2014.12.007
Leone S, Recinella L, Chiavaroli A, Ferrante C, Orlando G, Vacca M, et al. Behavioural phenotyping, learning and memory in young and aged growth hormone-releasing hormone-knockout mice. Endocr Connect. 2018;7:924–31.
pubmed: 30300535 pmcid: 6130317 doi: 10.1530/EC-18-0165
Chiavaroli A, Recinella L, Ferrante C, Martinotti S, Vacca M, Brunetti L, et al. Effects of central fibroblast growth factor 21 and irisin in anxiety-like behavior. J Biol Regul Homeost Agents. 2017;31:797–802.
pubmed: 28890831
Leone S, Recinella L, Chiavaroli A, Martinotti S, Ferrante C, Mollica A, et al. Emotional disorders induced by Hemopressin and RVD-hemopressin(α) administration in rats. Pharm Rep. 2017;69:1247–53.
doi: 10.1016/j.pharep.2017.06.010
Recinella L, Chiavaroli A, Ferrante C, Mollica A, Macedonio G, Stefanucci A, et al. Effects of central RVD-hemopressin(α) administration on anxiety, feeding behavior and hypothalamic neuromodulators in the rat. Pharm Rep. 2018;70:650–7.
doi: 10.1016/j.pharep.2018.01.010
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th ed. Elsevier Academy Press: 2007.
Di Giulio C, Marconi GD, Zara S, Di Tano A, Porzionato A, Pokorski M, et al. Selective expression of galanin in neuronal-like cells of the human carotid body. Adv Exp Med Biol. 2015;860:315–23.
pubmed: 26303496 doi: 10.1007/978-3-319-18440-1_36
Veschi S, De Lellis L, Florio R, Lanuti P, Massucci A, Tinari N, et al. Effects of repurposed drug candidates nitroxoline and nelfinavir as single agents or in combination with erlotinib in pancreatic cancer cells. J Exp Clin Cancer Res. 2018;37:236.
pubmed: 30241558 pmcid: 6151049 doi: 10.1186/s13046-018-0904-2
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real- time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–8.
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Barabutis N, Schally AV, Siejka A. P53, GHRH, inflammation and cancer. EBioMed. 2018;37:557–62.
doi: 10.1016/j.ebiom.2018.10.034
Barabutis N, Schally AV. Antioxidant activity of growth hormone-releasing hormone antagonists in LNCaP human prostate cancer line. Proc Natl Acad Sci USA. 2008;105:20470–5.
pubmed: 19075233 pmcid: 2629286 doi: 10.1073/pnas.0811209106
Popovics P, Cai R, Sha W, Rick FG, Schally AV. Growth hormone-releasing hormone antagonists reduce prostatic enlargement and inflammation in carrageenan-induced chronic prostatitis. Prostate. 2018;78:970–80.
pubmed: 29786867 doi: 10.1002/pros.23655
Qin YJ, Chan SO, Chong KK, Li BF, Ng TK, Yip YW, et al. Antagonist of GH-releasing hormone receptors alleviates experimental ocular inflammation. Proc Natl Acad Sci USA. 2014;111:18303–8.
pubmed: 25489106 pmcid: 4280596 doi: 10.1073/pnas.1421815112
Ren JL, Yu QX, Ma D, Liang WC, Leung PY, Ng TK, et al. Growth hormone-releasing hormone receptor mediates cytokine production in ciliary and iris epithelial cells during LPS-induced ocular inflammation. Exp Eye Res. 2019;181:277–84.
pubmed: 30831084 doi: 10.1016/j.exer.2019.02.021
Zhang C, Cai R, Lazerson A, Delcroix G, Wangpaichitr M, Mirsaeidi M, et al. Growth hormone-releasing hormone receptor antagonist modulates lung inflammation and fibrosis due to bleomycin. Lung. 2019;197:541–9.
pubmed: 31392398 pmcid: 6778540 doi: 10.1007/s00408-019-00257-w
Banks WA, Morley JE, Farr SA, Price TO, Ercal N, Vidaurre I, et al. Effects of a growth hormone-releasing hormone antagonist on telomerase activity, oxidative stress, longevity, and aging in mice. Proc Natl Acad Sci USA. 2010;107:22272–7.
pubmed: 21135231 pmcid: 3009756 doi: 10.1073/pnas.1016369107
Fahrenholtz CD, Rick FG, Garcia MI, Zarandi M, Cai R, Block NL, et al. Preclinical efficacy of growth hormone-releasing hormone antagonists for androgen-dependent and castration-resistant human prostate cancer. Proc Natl Acad Sci USA. 2014;111:1084–9.
pubmed: 24395797 pmcid: 3903215 doi: 10.1073/pnas.1323102111
Vitiello MV, Moe KE, Merriam GR, Mazzoni G, Buchner DH, Schwartz RS. Growth hormone releasing hormone improves the cognition of healthy older adults. Neurobiol Aging. 2006;27:318–23.
pubmed: 16399214 doi: 10.1016/j.neurobiolaging.2005.01.010
Baker LD, Barsness SM, Borson S, Merriam GR, Friedman SD, Craft S, et al. Effects of growth hormone–releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial. Arch Neurol. 2012;69:1420–9.
pubmed: 22869065 pmcid: 3764914 doi: 10.1001/archneurol.2012.1970
Kalueff AV, Wheaton M, Murphy DL. What’s wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res. 2007;179:1–18.
pubmed: 17306892 doi: 10.1016/j.bbr.2007.01.023
Matsubara S, Sato M, Mizobuchi M, Niimi M, Takahara J. Differential gene expression of growth hormone (GH)-releasing hormone (GRH) and GRH receptor in various rat tissues. Endocrinology. 1995;136:4147–50.
pubmed: 7649123 doi: 10.1210/endo.136.9.7649123
Müller EE, Locatelli V, Cocchi D. Neuroendocrine control of growth hormone secretion. Physiol Rev. 1999;79:511–607.
pubmed: 10221989 doi: 10.1152/physrev.1999.79.2.511
Hallschmid M, Wilhelm I, Michel C, Perras B, Born J. A role for central nervous growth hormone-releasing hormone signaling in the consolidation of declarative memories. PLoS One. 2011;6:e23435.
pubmed: 21850272 pmcid: 3151301 doi: 10.1371/journal.pone.0023435
Telegdy G, Tanaka M, Schally AV. Effects of the growth hormone-releasing hormone (GH-RH) antagonist on brain functions in mice. Behav Brain Res. 2011;24:155–8.
doi: 10.1016/j.bbr.2011.05.036
Telegdy G, Schally AV. Involvement of neurotransmitters in the action of growth hormone-releasing hormone antagonist on passive avoidance learning. Behav Brain Res. 2012;233:326–30.
pubmed: 22640814 doi: 10.1016/j.bbr.2012.05.030
Telegdy G, Schally AV. Neurotransmitter-mediated action of an antagonist of growth hormone-releasing hormone on anxiolysis in mice. Behav Brain Res. 2012;233:232–6.
pubmed: 22569571 doi: 10.1016/j.bbr.2012.04.011
Jaszberenyi M, Rick FG, Szalontay L, Block NL, Zarandi M, Cai R, et al. Beneficial effects of novel antagonists of GHRH in different models of Alzheimer’s disease. Aging (Albany NY). 2012;4:755–67.
doi: 10.18632/aging.100504
Arwert LI, Veltman DJ, Deijen JB, van Dam PS, Delemarre-van deWaal HA, Drent ML. Growth hormone deficiency and memory functioning in adults visualized by functional magnetic resonance imaging. Neuroendocrinology. 2005;82:32–40.
pubmed: 16330884 doi: 10.1159/000090123
Engin E, Treit D. Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. Psychopharmacol (Berl). 2009;206:281–9.
doi: 10.1007/s00213-009-1605-5
Genzel L, Dresler M, Cornu M, Jäger E, Konrad B, Adamczyk M, et al. Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia. Biol Psychiatry. 2015;77:177–86.
pubmed: 25037555 doi: 10.1016/j.biopsych.2014.06.004
Godsil BP, Kiss JP, Spedding M, Jay TM. The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol. 2013;23:1165–81.
pubmed: 23332457 doi: 10.1016/j.euroneuro.2012.10.018
Li M, Long C, Yang L. Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. Biomed Res Int. 2015;2015:810548.
pubmed: 25918722 pmcid: 4396015
Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci. 2018;19:535–51.
pubmed: 30054570 pmcid: 6148363 doi: 10.1038/s41583-018-0039-7
Mendez-David I, Tritschler L, El Ali Z, Damiens MH, Pallardy M, David DJ, et al. Nrf2-signaling and BDNF: A new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci Lett. 2015;597:121–6.
pubmed: 25916883 doi: 10.1016/j.neulet.2015.04.036
Green CR, Corsi-Travali S, Neumeister A. The role of BDNF-TrkB signaling in the pathogenesis of PTSD. J Depress Anxiety. 2013;2013:006.
pubmed: 25226879 pmcid: 4161201
Prasadan KN, Bondy SC. Common biochemical defects linkage between post-traumatic stress disorders, mild traumatic brain injury (TBI) and penetrating TBI. Brain Res. 2015;1599:103–14.
doi: 10.1016/j.brainres.2014.12.038
Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharm Toxicol. 2007;47:89–116.
doi: 10.1146/annurev.pharmtox.46.120604.141046
Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624.
pubmed: 27211851 pmcid: 4879264 doi: 10.1038/ncomms11624
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharm Toxicol. 2013;53:401–26.
doi: 10.1146/annurev-pharmtox-011112-140320
Hashimoto K. Essential role of Keap1-Nrf2 signaling in mood disorders: overview and future perspective. Front Pharm. 2018;9:1182.
doi: 10.3389/fphar.2018.01182
Martín-de-Saavedra MD, Budni J, Cunha MP, Gómez-Rangel V, Lorrio S, Del Barrio L, et al. Nrf2 participates in depressive disorders through an anti-inflammatory mechanism. Psychoneuroendocrinology. 2013;38:2010–22.
pubmed: 23623252 doi: 10.1016/j.psyneuen.2013.03.020
Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57.
pubmed: 20015486 doi: 10.1016/j.biopsych.2009.09.033
Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71:171–86.
pubmed: 19188531 doi: 10.1097/PSY.0b013e3181907c1b
Pace TW, Wingenfeld K, Schmidt I, Meinlschmidt G, Hellhammer DH, Heim CM. Increased peripheral NF-kappaB pathway activity in women with childhood abuse-related posttraumatic stress disorder. Brain Behav Immun. 2012;26:13–7.
pubmed: 21801830 doi: 10.1016/j.bbi.2011.07.232
Ogłodek EA, Just MJ. The association between inflammatory markers (iNOS, HO-1, IL-33, MIP-1β) and depression with and without posttraumatic stress disorder. Pharm Rep. 2018;70:1065–72.
doi: 10.1016/j.pharep.2018.06.001
Schinder AF, Poo M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 2000;23:639–45.
pubmed: 11137155 doi: 10.1016/S0166-2236(00)01672-6
Reinhart V, Bove S, Volfson D, Lewis D, Kleiman R, Lanz T. Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder. Neurobiol Dis. 2015;77:220–7.
pubmed: 25796564 doi: 10.1016/j.nbd.2015.03.011
Rakofsky J, Ressler K, Dunlop B. BDNF function as a potential mediator of bipolar disorder and post-traumatic stress disorder comorbidity. Mol Psychiatry. 2012;17:22–35.
pubmed: 21931317 doi: 10.1038/mp.2011.121
Matrisciano F, Bonaccorso S, Ricciardi A, Scaccianoce S, Panaccione I, Wang L, et al. Changes in BDNF serum levels in patients with major depression disorder (MDD) after 6 months treatment with sertraline, escitalopram, or venlafaxine. J Psychiatr Res. 2009;43:247–54.
pubmed: 18511076 doi: 10.1016/j.jpsychires.2008.03.014
Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23:349–57.
pubmed: 12514234 pmcid: 6742146 doi: 10.1523/JNEUROSCI.23-01-00349.2003
Zhou C, Zhong J, Zou B, Fang L, Chen J, Deng X, et al. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS One. 2017;12:e0172270.
pubmed: 28241064 pmcid: 5328267 doi: 10.1371/journal.pone.0172270
Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22:123–31.
pubmed: 15518235 pmcid: 2504526 doi: 10.1080/08977190410001723308
Verbitsky A, Dopfel D, Zhang N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry. 2020;10:132.
pubmed: 32376819 pmcid: 7203017 doi: 10.1038/s41398-020-0806-x

Auteurs

Lucia Recinella (L)

Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.

Annalisa Chiavaroli (A)

Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.

Giustino Orlando (G)

Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.

Claudio Ferrante (C)

Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.

Serena Veschi (S)

Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.

Alessandro Cama (A)

Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.

Guya Diletta Marconi (GD)

Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.

Francesca Diomede (F)

Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.

Iacopo Gesmundo (I)

Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, Italy.

Riccarda Granata (R)

Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, Italy.

Renzhi Cai (R)

Veterans Affairs Medical Center, Miami, FL, USA.
Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.
Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Wei Sha (W)

Veterans Affairs Medical Center, Miami, FL, USA.
Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.
Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Andrew V Schally (AV)

Veterans Affairs Medical Center, Miami, FL, USA.
Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.
Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Luigi Brunetti (L)

Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy. luigi.brunetti@unich.it.

Sheila Leone (S)

Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy. sheila.leone@unich.it.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH