Exploring cannabidiol effects on inflammatory markers in individuals with cocaine use disorder: a randomized controlled trial.


Journal

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907

Informations de publication

Date de publication:
11 2021
Historique:
received: 12 04 2021
accepted: 06 07 2021
revised: 01 07 2021
pubmed: 1 8 2021
medline: 11 11 2021
entrez: 31 7 2021
Statut: ppublish

Résumé

Cocaine use disorder (CUD) is a major public health issue associated with physical, social, and psychological problems. Excessive and repeated cocaine use induces oxidative stress leading to a systemic inflammatory response. Cannabidiol (CBD) has gained substantial interest for its anti-inflammatory properties, safety, and tolerability profile. However, CBD anti-inflammatory properties have yet to be confirmed in humans. This exploratory study is based on a single-site randomized controlled trial that enrolled participants with CUD between 18 and 65 years, randomized (1:1) to daily receive either CBD (800 mg) or placebo for 92 days. The trial was divided into a 10-day detoxification (phase I) followed by a 12-week outpatient follow-up (phase II). Blood samples were collected from 48 participants at baseline, day 8, week 4, and week 12 and were analyzed to determine monocytes and lymphocytes phenotypes, and concentrations of various inflammatory markers such as cytokines. We used generalized estimating equations to detect group differences. Participants treated with CBD had lower levels of interleukin-6 (p = 0.017), vascular endothelial growth factor (p = 0.032), intermediate monocytes CD14

Identifiants

pubmed: 34331010
doi: 10.1038/s41386-021-01098-z
pii: 10.1038/s41386-021-01098-z
pmc: PMC8505631
doi:

Substances chimiques

Vascular Endothelial Growth Factor A 0
Cannabidiol 19GBJ60SN5
Cocaine I5Y540LHVR

Types de publication

Journal Article Randomized Controlled Trial Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2101-2111

Informations de copyright

© 2021. The Author(s), under exclusive licence to American College of Neuropsychopharmacology.

Références

United Nations Office on Drugs and Crime. World drug report 2019. Vienna, Austria: United Nations Publications; 2019. Sales No. E.19.XI.8.
Florez-Salamanca L, Secades-Villa R, Hasin DS, Cottler L, Wang S, Grant BF, et al. Probability and predictors of transition from abuse to dependence on alcohol, cannabis, and cocaine: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Am J Drug Alcohol Abus. 2013;39:168–79. https://doi.org/10.3109/00952990.2013.772618 .
doi: 10.3109/00952990.2013.772618
Farrell M, Martin NK, Stockings E, Bórquez A, Cepeda JA, Degenhardt L, et al. Responding to global stimulant use: challenges and opportunities. Lancet 2019;394:1652–67. https://doi.org/10.1016/s0140-6736(19)32230-5 .
doi: 10.1016/s0140-6736(19)32230-5 pubmed: 31668409 pmcid: 6924572
Zaparte A, Schuch JB, Viola TW, Baptista TAS, Beidacki AS, do Prado CH, et al. Cocaine use disorder is associated with changes in Th1/Th2/Th17 cytokines and lymphocytes subsets. Front Immunol. 2019;10:2435. https://doi.org/10.3389/fimmu.2019.02435 .
doi: 10.3389/fimmu.2019.02435 pubmed: 31749792 pmcid: 6843068
Narvaez JC, Magalhaes PV, Fries GR, Colpo GD, Czepielewski LS, Vianna P, et al. Peripheral toxicity in crack cocaine use disorders. Neurosci Lett. 2013;544:80–4. https://doi.org/10.1016/j.neulet.2013.03.045 .
doi: 10.1016/j.neulet.2013.03.045 pubmed: 23597759
Moreira FP, Medeiros JR, Lhullier AC, Souza LD, Jansen K, Portela LV, et al. Cocaine abuse and effects in the serum levels of cytokines IL-6 and IL-10. Drug Alcohol Depend. 2016;158:181–5. https://doi.org/10.1016/j.drugalcdep.2015.11.024 .
doi: 10.1016/j.drugalcdep.2015.11.024 pubmed: 26679059
Fox HC, D’Sa C, Kimmerling A, Siedlarz KM, Tuit KL, Stowe R, et al. Immune system inflammation in cocaine dependent individuals: implications for medications development. Hum Psychopharmacol. 2012;27:156–66. https://doi.org/10.1002/hup.1251 .
doi: 10.1002/hup.1251 pubmed: 22389080 pmcid: 3674778
Levandowski ML, Viola TW, Wearick-Silva LE, Wieck A, Tractenberg SG, Brietzke E, et al. Early life stress and tumor necrosis factor superfamily in crack cocaine withdrawal. J Psychiatr Res. 2014;53:180–6. https://doi.org/10.1016/j.jpsychires.2014.02.017 .
doi: 10.1016/j.jpsychires.2014.02.017 pubmed: 24631195
Manetti L, Cavagnini F, Martino E, Ambrogio A. Effects of cocaine on the hypothalamic–pituitary–adrenal axis. J Endocrinol Invest. 2014;37:701–8. https://doi.org/10.1007/s40618-014-0091-8 .
doi: 10.1007/s40618-014-0091-8 pubmed: 24852417
Sholar MB, Mendelson JH, Mello NK, Siegel AJ, Kaufman MJ, Levin JM, et al. Concurrent pharmacokinetic analysis of plasma cocaine and adrenocorticotropic hormone in men. J Clin Endocrinol Metab. 1998;83:966–8. https://doi.org/10.1210/jcem.83.3.4654 .
doi: 10.1210/jcem.83.3.4654 pubmed: 9506757
Riezzo I, Fiore C, De Carlo D, Pascale N, Neri M, Turillazzi E, et al. Side effects of cocaine abuse: multiorgan toxicity and pathological consequences. Curr Med Chem. 2012;19:5624–46. https://doi.org/10.2174/092986712803988893 .
doi: 10.2174/092986712803988893 pubmed: 22934772
Loftis JM, Huckans M. Substance use disorders: psychoneuroimmunological mechanisms and new targets for therapy. Pharm Ther. 2013;139:289–300. https://doi.org/10.1016/j.pharmthera.2013.04.011 .
doi: 10.1016/j.pharmthera.2013.04.011
Lopez-Pedrajas R, Ramirez-Lamelas DT, Muriach B, Sanchez-Villarejo MV, Almansa I, Vidal-Gil L, et al. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum. Front Cell Neurosci. 2015;9:279. https://doi.org/10.3389/fncel.2015.00279 .
doi: 10.3389/fncel.2015.00279 pubmed: 26283916 pmcid: 4516895
Cisneros IE, Erdenizmenli M, Cunningham KA, Paessler S, Dineley KT. Cocaine evokes a profile of oxidative stress and impacts innate antiviral response pathways in astrocytes. Neuropharmacology 2018;135:431–43. https://doi.org/10.1016/j.neuropharm.2018.03.019 .
doi: 10.1016/j.neuropharm.2018.03.019 pubmed: 29578037 pmcid: 5975185
Picard M, Juster RP, McEwen BS. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev Endocrinol. 2014;10:303–10. https://doi.org/10.1038/nrendo.2014.22 .
doi: 10.1038/nrendo.2014.22 pubmed: 24663223
Kovacic P. Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses. 2005;64:350–6. https://doi.org/10.1016/j.mehy.2004.06.028 .
doi: 10.1016/j.mehy.2004.06.028 pubmed: 15607570
Sajja RK, Rahman S, Cucullo L. Drugs of abuse and blood–brain barrier endothelial dysfunction: a focus on the role of oxidative stress. J Cereb Blood Flow Metab. 2016;36:539–54. https://doi.org/10.1177/0271678X15616978 .
doi: 10.1177/0271678X15616978 pubmed: 26661236
Dhillon NK, Peng F, Bokhari S, Callen S, Shin SH, Zhu X, et al. Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood–brain barrier: implications for HIV-dementia. J Neuroimmune Pharmacol. 2008;3:52–6. https://doi.org/10.1007/s11481-007-9091-1 .
doi: 10.1007/s11481-007-9091-1 pubmed: 18046654
Pimentel E, Sivalingam K, Doke M, Samikkannu T. Effects of drugs of abuse on the blood–brain barrier: a brief overview. Front Neurosci. 2020;14:513. https://doi.org/10.3389/fnins.2020.00513 .
doi: 10.3389/fnins.2020.00513 pubmed: 32670001 pmcid: 7326150
Kousik SM, Napier TC, Carvey PM. The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol. 2012;3:121. https://doi.org/10.3389/fphar.2012.00121 .
doi: 10.3389/fphar.2012.00121 pubmed: 22754527 pmcid: 3386512
Clark KH, Wiley CA, Bradberry CW. Psychostimulant abuse and neuroinflammation: emerging evidence of their interconnection. Neurotox Res. 2013;23:174–88. https://doi.org/10.1007/s12640-012-9334-7 .
doi: 10.1007/s12640-012-9334-7 pubmed: 22714667
Moretti M, Belli G, Morini L, Monti MC, Osculati AMM, Visona SD. Drug abuse-related neuroinflammation in human postmortem brains: an immunohistochemical approach. J Neuropathol Exp Neurol. 2019;78:1059–65. https://doi.org/10.1093/jnen/nlz084 .
doi: 10.1093/jnen/nlz084 pubmed: 31559425
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32. https://doi.org/10.1038/s41591-019-0675-0 .
doi: 10.1038/s41591-019-0675-0 pubmed: 31806905 pmcid: 7147972
Barron H, Hafizi S, Andreazza AC, Mizrahi R. Neuroinflammation and oxidative stress in psychosis and psychosis risk. Int J Mol Sci. 2017;18:651. https://doi.org/10.3390/ijms18030651 .
doi: 10.3390/ijms18030651 pmcid: 5372663
Nichols JM, Kaplan BLF. Immune responses regulated by cannabidiol. Cannabis Cannabinoid Res. 2020;5:12–31. https://doi.org/10.1089/can.2018.0073 .
doi: 10.1089/can.2018.0073 pubmed: 32322673 pmcid: 7173676
McKenna M, McDougall JJ. Cannabinoid control of neurogenic inflammation. Br J Pharmacol. 2020;177:4386–99. https://doi.org/10.1111/bph.15208 .
doi: 10.1111/bph.15208 pubmed: 33289534 pmcid: 7484507
Atalay S, Jarocka-Karpowicz I, Skrzydlewska E. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants. 2019;9:21. https://doi.org/10.3390/antiox9010021 .
doi: 10.3390/antiox9010021 pmcid: 7023045
Lattanzi S, Brigo F, Trinka E, Zaccara G, Cagnetti C, Del Giovane C, et al. Efficacy and safety of cannabidiol in epilepsy: a systematic review and meta-analysis. Drugs 2018;78:1791–804. https://doi.org/10.1007/s40265-018-0992-5 .
doi: 10.1007/s40265-018-0992-5 pubmed: 30390221
Bonaccorso S, Ricciardi A, Zangani C, Chiappini S, Schifano F, Cannabidiol CBD. use in psychiatric disorders: a systematic review. Neurotoxicology 2019;74:282–98. https://doi.org/10.1016/j.neuro.2019.08.002 .
doi: 10.1016/j.neuro.2019.08.002 pubmed: 31412258
Larsen C, Shahinas J. Dosage, efficacy and safety of cannabidiol administration in adults: a systematic review of human trials. J Clin Med Res. 2020;12:129–41. https://doi.org/10.14740/jocmr4090 .
doi: 10.14740/jocmr4090 pubmed: 32231748 pmcid: 7092763
de Almeida DL, Devi LA. Diversity of molecular targets and signaling pathways for CBD. Pharm Res Perspect. 2020;8:e00682. https://doi.org/10.1002/prp2.682 .
doi: 10.1002/prp2.682
Jadoon KA, Ratcliffe SH, Barrett DA, Thomas EL, Stott C, Bell JD, et al. Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study. Diabetes Care. 2016;39:1777–86. https://doi.org/10.2337/dc16-0650 .
doi: 10.2337/dc16-0650 pubmed: 27573936
Mongeau-Perusse V, Brissette S, Bruneau J, Conrod P, Dubreucq S, Gazil G, et al. Cannabidiol as a treatment for craving and relapse in individuals with cocaine use disorder: a Randomized Placebo-Controlled Trial. Addiction 2021. https://doi.org/10.1111/add.15417 .
doi: 10.1111/add.15417 pubmed: 33464660 pmcid: 8451934
Fox HC, Garcia M Jr, Kemp K, Milivojevic V, Kreek MJ, Sinha R. Gender differences in cardiovascular and corticoadrenal response to stress and drug cues in cocaine dependent individuals. Psychopharmacology. 2006;185:348–57. https://doi.org/10.1007/s00213-005-0303-1 .
doi: 10.1007/s00213-005-0303-1 pubmed: 16514523
Ferri CP, Dunn J, Gossop M, Laranjeira R. Factors associated with adverse reactions to cocaine among a sample of long-term, high-dose users in Sao Paulo, Brazil. Addict Behav. 2004;29:365–74. https://doi.org/10.1016/j.addbeh.2003.08.029 .
doi: 10.1016/j.addbeh.2003.08.029 pubmed: 14732425
Iffland K, Grotenhermen F. An update on safety and side effects of cannabidiol: a review of clinical data and relevant animal studies. Cannabis Cannabinoid Res. 2017;2:139–54. https://doi.org/10.1089/can.2016.0034 .
doi: 10.1089/can.2016.0034 pubmed: 28861514 pmcid: 5569602
Cui C, Shurtleff D, Harris RA. Neuroimmune mechanisms of alcohol and drug addiction. Int Rev Neurobiol. 2014;118:1–12. https://doi.org/10.1016/B978-0-12-801284-0.00001-4 .
doi: 10.1016/B978-0-12-801284-0.00001-4 pubmed: 25175859 pmcid: 4804710
Szekely Y, Ingbir M, Bentur OS, Hochner O, Porat R. Natural cannabinoids suppress the cytokine storm in sepsis-like in vitro model. Eur Cytokine Netw. 2020;31:50–8. https://doi.org/10.1684/ecn.2020.0445 .
doi: 10.1684/ecn.2020.0445 pubmed: 32933892
Yeisley DJ, Arabiyat AS, Hahn MS. Cannabidiol-driven alterations to inflammatory protein landscape of lipopolysaccharide-activated macrophages in vitro may be mediated by autophagy and oxidative stress. Cannabis Cannabinoid Res. 2021. https://doi.org/10.1089/can.2020.0109 .
doi: 10.1089/can.2020.0109 pubmed: 33998893
Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G. Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis. 2020;11:714. https://doi.org/10.1038/s41419-020-02892-1 .
doi: 10.1038/s41419-020-02892-1 pubmed: 32873774 pmcid: 7463000
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295. https://doi.org/10.1101/cshperspect.a016295 .
doi: 10.1101/cshperspect.a016295 pubmed: 25190079 pmcid: 4176007
El-Remessy AB, Al-Shabrawey M, Khalifa Y, Tsai NT, Caldwell RB, Liou GI. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol. 2006;168:235–44. https://doi.org/10.2353/ajpath.2006.050500 .
doi: 10.2353/ajpath.2006.050500 pubmed: 16400026 pmcid: 1592672
Maor Y, Yu J, Kuzontkoski PM, Dezube BJ, Zhang X, Groopman JE. Cannabidiol inhibits growth and induces programmed cell death in kaposi sarcoma-associated herpesvirus-infected endothelium. Genes Cancer. 2012;3:512–20. https://doi.org/10.1177/1947601912466556 .
doi: 10.1177/1947601912466556 pubmed: 23264851 pmcid: 3527984
Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005;437:497–504. https://doi.org/10.1038/nature03987 .
doi: 10.1038/nature03987 pubmed: 16177780
Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122:2454–68. https://doi.org/10.1172/JCI60842 .
doi: 10.1172/JCI60842 pubmed: 22653056 pmcid: 3386814
Petty MA, Lo EH. Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog Neurobiol. 2002;68:311–23. https://doi.org/10.1016/s0301-0082(02)00128-4 .
doi: 10.1016/s0301-0082(02)00128-4 pubmed: 12531232
Suzuki Y, Nagai N, Umemura K. A review of the mechanisms of blood–brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Front Cell Neurosci. 2016;10:2 https://doi.org/10.3389/fncel.2016.00002 .
doi: 10.3389/fncel.2016.00002 pubmed: 26834557 pmcid: 4724711
Lurie DI. An integrative approach to neuroinflammation in psychiatric disorders and neuropathic pain. J Exp Neurosci. 2018;12:1179069518793639. https://doi.org/10.1177/1179069518793639 .
doi: 10.1177/1179069518793639 pubmed: 30127639 pmcid: 6090491
Fourrier C, Singhal G, Baune BT. Neuroinflammation and cognition across psychiatric conditions. CNS Spectr. 2019;24:4–15. https://doi.org/10.1017/S1092852918001499 .
doi: 10.1017/S1092852918001499 pubmed: 30714555
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep. 2016;13:3391–6. https://doi.org/10.3892/mmr.2016.4948 .
doi: 10.3892/mmr.2016.4948 pubmed: 26935478 pmcid: 4805095
Zhang HT, Zhang P, Gao Y, Li CL, Wang HJ, Chen LC, et al. Early VEGF inhibition attenuates blood–brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57–64. https://doi.org/10.3892/mmr.2016.5974 .
doi: 10.3892/mmr.2016.5974 pubmed: 27909732
Chi OZ, Hunter C, Liu X, Weiss HR. Effects of anti-VEGF antibody on blood–brain barrier disruption in focal cerebral ischemia. Exp Neurol. 2007;204:283–7. https://doi.org/10.1016/j.expneurol.2006.11.001 .
doi: 10.1016/j.expneurol.2006.11.001 pubmed: 17188266
Wu HY, Huang CH, Lin YH, Wang CC, Jan TR. Cannabidiol induced apoptosis in human monocytes through mitochondrial permeability transition pore-mediated ROS production. Free Radic Biol Med. 2018;124:311–8. https://doi.org/10.1016/j.freeradbiomed.2018.06.023 .
doi: 10.1016/j.freeradbiomed.2018.06.023 pubmed: 29940353
Rajesh M, Mukhopadhyay P, Batkai S, Hasko G, Liaudet L, Drel VR, et al. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol. 2007;293:H610–9. https://doi.org/10.1152/ajpheart.00236.2007 .
doi: 10.1152/ajpheart.00236.2007 pubmed: 17384130
Dhanda AD, Williams EL, Yates E, Lait PJP, Schewitz-Bowers LP, Hegazy D, et al. Intermediate monocytes in acute alcoholic hepatitis are functionally activated and induce IL-17 expression in CD4(+) T cells. J Immunol. 2019;203:3190–8. https://doi.org/10.4049/jimmunol.1800742 .
doi: 10.4049/jimmunol.1800742 pubmed: 31722987
Gaur P, Myles A, Misra R, Aggarwal A. Intermediate monocytes are increased in enthesitis-related arthritis, a category of juvenile idiopathic arthritis. Clin Exp Immunol. 2017;187:234–41. https://doi.org/10.1111/cei.12880 .
doi: 10.1111/cei.12880 pubmed: 27706807
O’Brien EC, Abdulahad WH, Rutgers A, Huitema MG, O’Reilly VP, Coughlan AM, et al. Intermediate monocytes in ANCA vasculitis: increased surface expression of ANCA autoantigens and IL-1beta secretion in response to anti-MPO antibodies. Sci Rep. 2015;5:11888. https://doi.org/10.1038/srep11888 .
doi: 10.1038/srep11888 pubmed: 26149790 pmcid: 4493694
Franca CN, Izar MCO, Hortencio MNS, do Amaral JB, Ferreira CES, Tuleta ID, et al. Monocyte subtypes and the CCR2 chemokine receptor in cardiovascular disease. Clin Sci. 2017;131:1215–24. https://doi.org/10.1042/CS20170009 .
doi: 10.1042/CS20170009
Wolf AA, Yanez A, Barman PK, Goodridge HS. The ontogeny of monocyte subsets. Front Immunol. 2019;10:1642 https://doi.org/10.3389/fimmu.2019.01642 .
doi: 10.3389/fimmu.2019.01642 pubmed: 31379841 pmcid: 6650567
Ignatowska-Jankowska B, Jankowski M, Glac W, Swiergel AH. Cannabidiol-induced lymphopenia does not involve NKT and NK cells. J Physiol Pharmacol. 2009;60 Suppl 3:99–103.
pubmed: 19996489
Jan TR, Su ST, Wu HY, Liao MH. Suppressive effects of cannabidiol on antigen-specific antibody production and functional activity of splenocytes in ovalbumin-sensitized BALB/c mice. Int Immunopharmacol. 2007;7:773–80. https://doi.org/10.1016/j.intimp.2007.01.015 .
doi: 10.1016/j.intimp.2007.01.015 pubmed: 17466911
Wu HY, Chu RM, Wang CC, Lee CY, Lin SH, Jan TR. Cannabidiol-induced apoptosis in primary lymphocytes is associated with oxidative stress-dependent activation of caspase-8. Toxicol Appl Pharmacol. 2008;226:260–70. https://doi.org/10.1016/j.taap.2007.09.012 .
doi: 10.1016/j.taap.2007.09.012 pubmed: 17950393
Dhital S, Stokes JV, Park N, Seo KS, Kaplan BL. Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation. Cell Immunol. 2017;312:25–34. https://doi.org/10.1016/j.cellimm.2016.11.006 .
doi: 10.1016/j.cellimm.2016.11.006 pubmed: 27865421
Bahador A, Hadjati J, Hassannejad N, Ghazanfari H, Maracy M, Jafari S, et al. Frequencies of CD4+ T regulatory cells and their CD25(high) and FoxP3(high) subsets augment in peripheral blood of patients with acute and chronic Brucellosis. Osong Public Health Res Perspect. 2014;5:161–8. https://doi.org/10.1016/j.phrp.2014.04.008 .
doi: 10.1016/j.phrp.2014.04.008 pubmed: 25180149 pmcid: 4147229
Santegoets SJ, Dijkgraaf EM, Battaglia A, Beckhove P, Britten CM, Gallimore A, et al. Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol Immunother. 2015;64:1271–86. https://doi.org/10.1007/s00262-015-1729-x .
doi: 10.1007/s00262-015-1729-x pubmed: 26122357 pmcid: 4554737
Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol. 2002;2:389–400. https://doi.org/10.1038/nri821 .
doi: 10.1038/nri821 pubmed: 12093005
Corthay A. How do regulatory T cells work? Scand J Immunol. 2009;70:326–36. https://doi.org/10.1111/j.1365-3083.2009.02308.x .
doi: 10.1111/j.1365-3083.2009.02308.x pubmed: 19751267 pmcid: 2784904
Romano M, Fanelli G, Tan N, Nova-Lamperti E, McGregor R, Lechler RI, et al. Expanded regulatory T cells induce alternatively activated monocytes with a reduced capacity to expand T helper-17 cells. Front Immunol. 2018;9:1625. https://doi.org/10.3389/fimmu.2018.01625 .
doi: 10.3389/fimmu.2018.01625 pubmed: 30079063 pmcid: 6062605
Guo N, Liu L, Yang X, Song T, Li G, Li L, et al. Immunological changes in monocyte subsets and their association with Foxp3(+) regulatory T cells in HIV-1-infected individuals with syphilis: a brief research report. Front Immunol. 2019;10:714. https://doi.org/10.3389/fimmu.2019.00714 .
doi: 10.3389/fimmu.2019.00714 pubmed: 31024549 pmcid: 6465566
Muller-Durovic B, Grahlert J, Devine OP, Akbar AN, Hess C. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging. 2019;11:724–40. https://doi.org/10.18632/aging.101774 .
doi: 10.18632/aging.101774 pubmed: 30686790 pmcid: 6366961
Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front Immunol. 2019;10:3038. https://doi.org/10.3389/fimmu.2019.03038 .
doi: 10.3389/fimmu.2019.03038 pubmed: 32038612
Chan B, Kondo K, Freeman M, Ayers C, Montgomery J, Kansagara D. Pharmacotherapy for cocaine use disorder—a systematic review and meta-analysis. J Gen Intern Med. 2019;34:2858–73. https://doi.org/10.1007/s11606-019-05074-8 .
doi: 10.1007/s11606-019-05074-8 pubmed: 31183685 pmcid: 6854210
Haney M, Malcolm RJ, Babalonis S, Nuzzo PA, Cooper ZD, Bedi G, et al. Oral cannabidiol does not alter the subjective, reinforcing or cardiovascular effects of smoked cannabis. Neuropsychopharmacology 2016;41:1974–82. https://doi.org/10.1038/npp.2015.367 .
doi: 10.1038/npp.2015.367 pubmed: 26708108 pmcid: 4908634

Auteurs

Florence Morissette (F)

Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada.
Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.

Violaine Mongeau-Pérusse (V)

Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada.
Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.

Elie Rizkallah (E)

Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada.
Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.

Paméla Thébault (P)

Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.
Montreal Cancer Institute, Montreal, QC, Canada.

Stéphanie Lepage (S)

Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.
Montreal Cancer Institute, Montreal, QC, Canada.

Suzanne Brissette (S)

Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.
Faculty of Medicine, Department of Family and Emergency Medicine, Université de Montréal, Montreal, QC, Canada.

Julie Bruneau (J)

Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.
Faculty of Medicine, Department of Family and Emergency Medicine, Université de Montréal, Montreal, QC, Canada.

Simon Dubreucq (S)

Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada.
Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.

Emmanuel Stip (E)

Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada.
Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.
Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.

Jean-François Cailhier (JF)

Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.
Montreal Cancer Institute, Montreal, QC, Canada.
Division of Nephrology, Department of Medicine, Université de Montréal, Montreal, QC, Canada.

Didier Jutras-Aswad (D)

Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada. didier.jutras-aswad@umontreal.ca.
Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada. didier.jutras-aswad@umontreal.ca.
University Institute on Addictions, Montreal, QC, Canada. didier.jutras-aswad@umontreal.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH