Exploring cannabidiol effects on inflammatory markers in individuals with cocaine use disorder: a randomized controlled trial.
Journal
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
12
04
2021
accepted:
06
07
2021
revised:
01
07
2021
pubmed:
1
8
2021
medline:
11
11
2021
entrez:
31
7
2021
Statut:
ppublish
Résumé
Cocaine use disorder (CUD) is a major public health issue associated with physical, social, and psychological problems. Excessive and repeated cocaine use induces oxidative stress leading to a systemic inflammatory response. Cannabidiol (CBD) has gained substantial interest for its anti-inflammatory properties, safety, and tolerability profile. However, CBD anti-inflammatory properties have yet to be confirmed in humans. This exploratory study is based on a single-site randomized controlled trial that enrolled participants with CUD between 18 and 65 years, randomized (1:1) to daily receive either CBD (800 mg) or placebo for 92 days. The trial was divided into a 10-day detoxification (phase I) followed by a 12-week outpatient follow-up (phase II). Blood samples were collected from 48 participants at baseline, day 8, week 4, and week 12 and were analyzed to determine monocytes and lymphocytes phenotypes, and concentrations of various inflammatory markers such as cytokines. We used generalized estimating equations to detect group differences. Participants treated with CBD had lower levels of interleukin-6 (p = 0.017), vascular endothelial growth factor (p = 0.032), intermediate monocytes CD14
Identifiants
pubmed: 34331010
doi: 10.1038/s41386-021-01098-z
pii: 10.1038/s41386-021-01098-z
pmc: PMC8505631
doi:
Substances chimiques
Vascular Endothelial Growth Factor A
0
Cannabidiol
19GBJ60SN5
Cocaine
I5Y540LHVR
Types de publication
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2101-2111Informations de copyright
© 2021. The Author(s), under exclusive licence to American College of Neuropsychopharmacology.
Références
United Nations Office on Drugs and Crime. World drug report 2019. Vienna, Austria: United Nations Publications; 2019. Sales No. E.19.XI.8.
Florez-Salamanca L, Secades-Villa R, Hasin DS, Cottler L, Wang S, Grant BF, et al. Probability and predictors of transition from abuse to dependence on alcohol, cannabis, and cocaine: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Am J Drug Alcohol Abus. 2013;39:168–79. https://doi.org/10.3109/00952990.2013.772618 .
doi: 10.3109/00952990.2013.772618
Farrell M, Martin NK, Stockings E, Bórquez A, Cepeda JA, Degenhardt L, et al. Responding to global stimulant use: challenges and opportunities. Lancet 2019;394:1652–67. https://doi.org/10.1016/s0140-6736(19)32230-5 .
doi: 10.1016/s0140-6736(19)32230-5
pubmed: 31668409
pmcid: 6924572
Zaparte A, Schuch JB, Viola TW, Baptista TAS, Beidacki AS, do Prado CH, et al. Cocaine use disorder is associated with changes in Th1/Th2/Th17 cytokines and lymphocytes subsets. Front Immunol. 2019;10:2435. https://doi.org/10.3389/fimmu.2019.02435 .
doi: 10.3389/fimmu.2019.02435
pubmed: 31749792
pmcid: 6843068
Narvaez JC, Magalhaes PV, Fries GR, Colpo GD, Czepielewski LS, Vianna P, et al. Peripheral toxicity in crack cocaine use disorders. Neurosci Lett. 2013;544:80–4. https://doi.org/10.1016/j.neulet.2013.03.045 .
doi: 10.1016/j.neulet.2013.03.045
pubmed: 23597759
Moreira FP, Medeiros JR, Lhullier AC, Souza LD, Jansen K, Portela LV, et al. Cocaine abuse and effects in the serum levels of cytokines IL-6 and IL-10. Drug Alcohol Depend. 2016;158:181–5. https://doi.org/10.1016/j.drugalcdep.2015.11.024 .
doi: 10.1016/j.drugalcdep.2015.11.024
pubmed: 26679059
Fox HC, D’Sa C, Kimmerling A, Siedlarz KM, Tuit KL, Stowe R, et al. Immune system inflammation in cocaine dependent individuals: implications for medications development. Hum Psychopharmacol. 2012;27:156–66. https://doi.org/10.1002/hup.1251 .
doi: 10.1002/hup.1251
pubmed: 22389080
pmcid: 3674778
Levandowski ML, Viola TW, Wearick-Silva LE, Wieck A, Tractenberg SG, Brietzke E, et al. Early life stress and tumor necrosis factor superfamily in crack cocaine withdrawal. J Psychiatr Res. 2014;53:180–6. https://doi.org/10.1016/j.jpsychires.2014.02.017 .
doi: 10.1016/j.jpsychires.2014.02.017
pubmed: 24631195
Manetti L, Cavagnini F, Martino E, Ambrogio A. Effects of cocaine on the hypothalamic–pituitary–adrenal axis. J Endocrinol Invest. 2014;37:701–8. https://doi.org/10.1007/s40618-014-0091-8 .
doi: 10.1007/s40618-014-0091-8
pubmed: 24852417
Sholar MB, Mendelson JH, Mello NK, Siegel AJ, Kaufman MJ, Levin JM, et al. Concurrent pharmacokinetic analysis of plasma cocaine and adrenocorticotropic hormone in men. J Clin Endocrinol Metab. 1998;83:966–8. https://doi.org/10.1210/jcem.83.3.4654 .
doi: 10.1210/jcem.83.3.4654
pubmed: 9506757
Riezzo I, Fiore C, De Carlo D, Pascale N, Neri M, Turillazzi E, et al. Side effects of cocaine abuse: multiorgan toxicity and pathological consequences. Curr Med Chem. 2012;19:5624–46. https://doi.org/10.2174/092986712803988893 .
doi: 10.2174/092986712803988893
pubmed: 22934772
Loftis JM, Huckans M. Substance use disorders: psychoneuroimmunological mechanisms and new targets for therapy. Pharm Ther. 2013;139:289–300. https://doi.org/10.1016/j.pharmthera.2013.04.011 .
doi: 10.1016/j.pharmthera.2013.04.011
Lopez-Pedrajas R, Ramirez-Lamelas DT, Muriach B, Sanchez-Villarejo MV, Almansa I, Vidal-Gil L, et al. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum. Front Cell Neurosci. 2015;9:279. https://doi.org/10.3389/fncel.2015.00279 .
doi: 10.3389/fncel.2015.00279
pubmed: 26283916
pmcid: 4516895
Cisneros IE, Erdenizmenli M, Cunningham KA, Paessler S, Dineley KT. Cocaine evokes a profile of oxidative stress and impacts innate antiviral response pathways in astrocytes. Neuropharmacology 2018;135:431–43. https://doi.org/10.1016/j.neuropharm.2018.03.019 .
doi: 10.1016/j.neuropharm.2018.03.019
pubmed: 29578037
pmcid: 5975185
Picard M, Juster RP, McEwen BS. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev Endocrinol. 2014;10:303–10. https://doi.org/10.1038/nrendo.2014.22 .
doi: 10.1038/nrendo.2014.22
pubmed: 24663223
Kovacic P. Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses. 2005;64:350–6. https://doi.org/10.1016/j.mehy.2004.06.028 .
doi: 10.1016/j.mehy.2004.06.028
pubmed: 15607570
Sajja RK, Rahman S, Cucullo L. Drugs of abuse and blood–brain barrier endothelial dysfunction: a focus on the role of oxidative stress. J Cereb Blood Flow Metab. 2016;36:539–54. https://doi.org/10.1177/0271678X15616978 .
doi: 10.1177/0271678X15616978
pubmed: 26661236
Dhillon NK, Peng F, Bokhari S, Callen S, Shin SH, Zhu X, et al. Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood–brain barrier: implications for HIV-dementia. J Neuroimmune Pharmacol. 2008;3:52–6. https://doi.org/10.1007/s11481-007-9091-1 .
doi: 10.1007/s11481-007-9091-1
pubmed: 18046654
Pimentel E, Sivalingam K, Doke M, Samikkannu T. Effects of drugs of abuse on the blood–brain barrier: a brief overview. Front Neurosci. 2020;14:513. https://doi.org/10.3389/fnins.2020.00513 .
doi: 10.3389/fnins.2020.00513
pubmed: 32670001
pmcid: 7326150
Kousik SM, Napier TC, Carvey PM. The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol. 2012;3:121. https://doi.org/10.3389/fphar.2012.00121 .
doi: 10.3389/fphar.2012.00121
pubmed: 22754527
pmcid: 3386512
Clark KH, Wiley CA, Bradberry CW. Psychostimulant abuse and neuroinflammation: emerging evidence of their interconnection. Neurotox Res. 2013;23:174–88. https://doi.org/10.1007/s12640-012-9334-7 .
doi: 10.1007/s12640-012-9334-7
pubmed: 22714667
Moretti M, Belli G, Morini L, Monti MC, Osculati AMM, Visona SD. Drug abuse-related neuroinflammation in human postmortem brains: an immunohistochemical approach. J Neuropathol Exp Neurol. 2019;78:1059–65. https://doi.org/10.1093/jnen/nlz084 .
doi: 10.1093/jnen/nlz084
pubmed: 31559425
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32. https://doi.org/10.1038/s41591-019-0675-0 .
doi: 10.1038/s41591-019-0675-0
pubmed: 31806905
pmcid: 7147972
Barron H, Hafizi S, Andreazza AC, Mizrahi R. Neuroinflammation and oxidative stress in psychosis and psychosis risk. Int J Mol Sci. 2017;18:651. https://doi.org/10.3390/ijms18030651 .
doi: 10.3390/ijms18030651
pmcid: 5372663
Nichols JM, Kaplan BLF. Immune responses regulated by cannabidiol. Cannabis Cannabinoid Res. 2020;5:12–31. https://doi.org/10.1089/can.2018.0073 .
doi: 10.1089/can.2018.0073
pubmed: 32322673
pmcid: 7173676
McKenna M, McDougall JJ. Cannabinoid control of neurogenic inflammation. Br J Pharmacol. 2020;177:4386–99. https://doi.org/10.1111/bph.15208 .
doi: 10.1111/bph.15208
pubmed: 33289534
pmcid: 7484507
Atalay S, Jarocka-Karpowicz I, Skrzydlewska E. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants. 2019;9:21. https://doi.org/10.3390/antiox9010021 .
doi: 10.3390/antiox9010021
pmcid: 7023045
Lattanzi S, Brigo F, Trinka E, Zaccara G, Cagnetti C, Del Giovane C, et al. Efficacy and safety of cannabidiol in epilepsy: a systematic review and meta-analysis. Drugs 2018;78:1791–804. https://doi.org/10.1007/s40265-018-0992-5 .
doi: 10.1007/s40265-018-0992-5
pubmed: 30390221
Bonaccorso S, Ricciardi A, Zangani C, Chiappini S, Schifano F, Cannabidiol CBD. use in psychiatric disorders: a systematic review. Neurotoxicology 2019;74:282–98. https://doi.org/10.1016/j.neuro.2019.08.002 .
doi: 10.1016/j.neuro.2019.08.002
pubmed: 31412258
Larsen C, Shahinas J. Dosage, efficacy and safety of cannabidiol administration in adults: a systematic review of human trials. J Clin Med Res. 2020;12:129–41. https://doi.org/10.14740/jocmr4090 .
doi: 10.14740/jocmr4090
pubmed: 32231748
pmcid: 7092763
de Almeida DL, Devi LA. Diversity of molecular targets and signaling pathways for CBD. Pharm Res Perspect. 2020;8:e00682. https://doi.org/10.1002/prp2.682 .
doi: 10.1002/prp2.682
Jadoon KA, Ratcliffe SH, Barrett DA, Thomas EL, Stott C, Bell JD, et al. Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study. Diabetes Care. 2016;39:1777–86. https://doi.org/10.2337/dc16-0650 .
doi: 10.2337/dc16-0650
pubmed: 27573936
Mongeau-Perusse V, Brissette S, Bruneau J, Conrod P, Dubreucq S, Gazil G, et al. Cannabidiol as a treatment for craving and relapse in individuals with cocaine use disorder: a Randomized Placebo-Controlled Trial. Addiction 2021. https://doi.org/10.1111/add.15417 .
doi: 10.1111/add.15417
pubmed: 33464660
pmcid: 8451934
Fox HC, Garcia M Jr, Kemp K, Milivojevic V, Kreek MJ, Sinha R. Gender differences in cardiovascular and corticoadrenal response to stress and drug cues in cocaine dependent individuals. Psychopharmacology. 2006;185:348–57. https://doi.org/10.1007/s00213-005-0303-1 .
doi: 10.1007/s00213-005-0303-1
pubmed: 16514523
Ferri CP, Dunn J, Gossop M, Laranjeira R. Factors associated with adverse reactions to cocaine among a sample of long-term, high-dose users in Sao Paulo, Brazil. Addict Behav. 2004;29:365–74. https://doi.org/10.1016/j.addbeh.2003.08.029 .
doi: 10.1016/j.addbeh.2003.08.029
pubmed: 14732425
Iffland K, Grotenhermen F. An update on safety and side effects of cannabidiol: a review of clinical data and relevant animal studies. Cannabis Cannabinoid Res. 2017;2:139–54. https://doi.org/10.1089/can.2016.0034 .
doi: 10.1089/can.2016.0034
pubmed: 28861514
pmcid: 5569602
Cui C, Shurtleff D, Harris RA. Neuroimmune mechanisms of alcohol and drug addiction. Int Rev Neurobiol. 2014;118:1–12. https://doi.org/10.1016/B978-0-12-801284-0.00001-4 .
doi: 10.1016/B978-0-12-801284-0.00001-4
pubmed: 25175859
pmcid: 4804710
Szekely Y, Ingbir M, Bentur OS, Hochner O, Porat R. Natural cannabinoids suppress the cytokine storm in sepsis-like in vitro model. Eur Cytokine Netw. 2020;31:50–8. https://doi.org/10.1684/ecn.2020.0445 .
doi: 10.1684/ecn.2020.0445
pubmed: 32933892
Yeisley DJ, Arabiyat AS, Hahn MS. Cannabidiol-driven alterations to inflammatory protein landscape of lipopolysaccharide-activated macrophages in vitro may be mediated by autophagy and oxidative stress. Cannabis Cannabinoid Res. 2021. https://doi.org/10.1089/can.2020.0109 .
doi: 10.1089/can.2020.0109
pubmed: 33998893
Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G. Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis. 2020;11:714. https://doi.org/10.1038/s41419-020-02892-1 .
doi: 10.1038/s41419-020-02892-1
pubmed: 32873774
pmcid: 7463000
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295. https://doi.org/10.1101/cshperspect.a016295 .
doi: 10.1101/cshperspect.a016295
pubmed: 25190079
pmcid: 4176007
El-Remessy AB, Al-Shabrawey M, Khalifa Y, Tsai NT, Caldwell RB, Liou GI. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol. 2006;168:235–44. https://doi.org/10.2353/ajpath.2006.050500 .
doi: 10.2353/ajpath.2006.050500
pubmed: 16400026
pmcid: 1592672
Maor Y, Yu J, Kuzontkoski PM, Dezube BJ, Zhang X, Groopman JE. Cannabidiol inhibits growth and induces programmed cell death in kaposi sarcoma-associated herpesvirus-infected endothelium. Genes Cancer. 2012;3:512–20. https://doi.org/10.1177/1947601912466556 .
doi: 10.1177/1947601912466556
pubmed: 23264851
pmcid: 3527984
Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005;437:497–504. https://doi.org/10.1038/nature03987 .
doi: 10.1038/nature03987
pubmed: 16177780
Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122:2454–68. https://doi.org/10.1172/JCI60842 .
doi: 10.1172/JCI60842
pubmed: 22653056
pmcid: 3386814
Petty MA, Lo EH. Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog Neurobiol. 2002;68:311–23. https://doi.org/10.1016/s0301-0082(02)00128-4 .
doi: 10.1016/s0301-0082(02)00128-4
pubmed: 12531232
Suzuki Y, Nagai N, Umemura K. A review of the mechanisms of blood–brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Front Cell Neurosci. 2016;10:2 https://doi.org/10.3389/fncel.2016.00002 .
doi: 10.3389/fncel.2016.00002
pubmed: 26834557
pmcid: 4724711
Lurie DI. An integrative approach to neuroinflammation in psychiatric disorders and neuropathic pain. J Exp Neurosci. 2018;12:1179069518793639. https://doi.org/10.1177/1179069518793639 .
doi: 10.1177/1179069518793639
pubmed: 30127639
pmcid: 6090491
Fourrier C, Singhal G, Baune BT. Neuroinflammation and cognition across psychiatric conditions. CNS Spectr. 2019;24:4–15. https://doi.org/10.1017/S1092852918001499 .
doi: 10.1017/S1092852918001499
pubmed: 30714555
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep. 2016;13:3391–6. https://doi.org/10.3892/mmr.2016.4948 .
doi: 10.3892/mmr.2016.4948
pubmed: 26935478
pmcid: 4805095
Zhang HT, Zhang P, Gao Y, Li CL, Wang HJ, Chen LC, et al. Early VEGF inhibition attenuates blood–brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57–64. https://doi.org/10.3892/mmr.2016.5974 .
doi: 10.3892/mmr.2016.5974
pubmed: 27909732
Chi OZ, Hunter C, Liu X, Weiss HR. Effects of anti-VEGF antibody on blood–brain barrier disruption in focal cerebral ischemia. Exp Neurol. 2007;204:283–7. https://doi.org/10.1016/j.expneurol.2006.11.001 .
doi: 10.1016/j.expneurol.2006.11.001
pubmed: 17188266
Wu HY, Huang CH, Lin YH, Wang CC, Jan TR. Cannabidiol induced apoptosis in human monocytes through mitochondrial permeability transition pore-mediated ROS production. Free Radic Biol Med. 2018;124:311–8. https://doi.org/10.1016/j.freeradbiomed.2018.06.023 .
doi: 10.1016/j.freeradbiomed.2018.06.023
pubmed: 29940353
Rajesh M, Mukhopadhyay P, Batkai S, Hasko G, Liaudet L, Drel VR, et al. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol. 2007;293:H610–9. https://doi.org/10.1152/ajpheart.00236.2007 .
doi: 10.1152/ajpheart.00236.2007
pubmed: 17384130
Dhanda AD, Williams EL, Yates E, Lait PJP, Schewitz-Bowers LP, Hegazy D, et al. Intermediate monocytes in acute alcoholic hepatitis are functionally activated and induce IL-17 expression in CD4(+) T cells. J Immunol. 2019;203:3190–8. https://doi.org/10.4049/jimmunol.1800742 .
doi: 10.4049/jimmunol.1800742
pubmed: 31722987
Gaur P, Myles A, Misra R, Aggarwal A. Intermediate monocytes are increased in enthesitis-related arthritis, a category of juvenile idiopathic arthritis. Clin Exp Immunol. 2017;187:234–41. https://doi.org/10.1111/cei.12880 .
doi: 10.1111/cei.12880
pubmed: 27706807
O’Brien EC, Abdulahad WH, Rutgers A, Huitema MG, O’Reilly VP, Coughlan AM, et al. Intermediate monocytes in ANCA vasculitis: increased surface expression of ANCA autoantigens and IL-1beta secretion in response to anti-MPO antibodies. Sci Rep. 2015;5:11888. https://doi.org/10.1038/srep11888 .
doi: 10.1038/srep11888
pubmed: 26149790
pmcid: 4493694
Franca CN, Izar MCO, Hortencio MNS, do Amaral JB, Ferreira CES, Tuleta ID, et al. Monocyte subtypes and the CCR2 chemokine receptor in cardiovascular disease. Clin Sci. 2017;131:1215–24. https://doi.org/10.1042/CS20170009 .
doi: 10.1042/CS20170009
Wolf AA, Yanez A, Barman PK, Goodridge HS. The ontogeny of monocyte subsets. Front Immunol. 2019;10:1642 https://doi.org/10.3389/fimmu.2019.01642 .
doi: 10.3389/fimmu.2019.01642
pubmed: 31379841
pmcid: 6650567
Ignatowska-Jankowska B, Jankowski M, Glac W, Swiergel AH. Cannabidiol-induced lymphopenia does not involve NKT and NK cells. J Physiol Pharmacol. 2009;60 Suppl 3:99–103.
pubmed: 19996489
Jan TR, Su ST, Wu HY, Liao MH. Suppressive effects of cannabidiol on antigen-specific antibody production and functional activity of splenocytes in ovalbumin-sensitized BALB/c mice. Int Immunopharmacol. 2007;7:773–80. https://doi.org/10.1016/j.intimp.2007.01.015 .
doi: 10.1016/j.intimp.2007.01.015
pubmed: 17466911
Wu HY, Chu RM, Wang CC, Lee CY, Lin SH, Jan TR. Cannabidiol-induced apoptosis in primary lymphocytes is associated with oxidative stress-dependent activation of caspase-8. Toxicol Appl Pharmacol. 2008;226:260–70. https://doi.org/10.1016/j.taap.2007.09.012 .
doi: 10.1016/j.taap.2007.09.012
pubmed: 17950393
Dhital S, Stokes JV, Park N, Seo KS, Kaplan BL. Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation. Cell Immunol. 2017;312:25–34. https://doi.org/10.1016/j.cellimm.2016.11.006 .
doi: 10.1016/j.cellimm.2016.11.006
pubmed: 27865421
Bahador A, Hadjati J, Hassannejad N, Ghazanfari H, Maracy M, Jafari S, et al. Frequencies of CD4+ T regulatory cells and their CD25(high) and FoxP3(high) subsets augment in peripheral blood of patients with acute and chronic Brucellosis. Osong Public Health Res Perspect. 2014;5:161–8. https://doi.org/10.1016/j.phrp.2014.04.008 .
doi: 10.1016/j.phrp.2014.04.008
pubmed: 25180149
pmcid: 4147229
Santegoets SJ, Dijkgraaf EM, Battaglia A, Beckhove P, Britten CM, Gallimore A, et al. Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol Immunother. 2015;64:1271–86. https://doi.org/10.1007/s00262-015-1729-x .
doi: 10.1007/s00262-015-1729-x
pubmed: 26122357
pmcid: 4554737
Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol. 2002;2:389–400. https://doi.org/10.1038/nri821 .
doi: 10.1038/nri821
pubmed: 12093005
Corthay A. How do regulatory T cells work? Scand J Immunol. 2009;70:326–36. https://doi.org/10.1111/j.1365-3083.2009.02308.x .
doi: 10.1111/j.1365-3083.2009.02308.x
pubmed: 19751267
pmcid: 2784904
Romano M, Fanelli G, Tan N, Nova-Lamperti E, McGregor R, Lechler RI, et al. Expanded regulatory T cells induce alternatively activated monocytes with a reduced capacity to expand T helper-17 cells. Front Immunol. 2018;9:1625. https://doi.org/10.3389/fimmu.2018.01625 .
doi: 10.3389/fimmu.2018.01625
pubmed: 30079063
pmcid: 6062605
Guo N, Liu L, Yang X, Song T, Li G, Li L, et al. Immunological changes in monocyte subsets and their association with Foxp3(+) regulatory T cells in HIV-1-infected individuals with syphilis: a brief research report. Front Immunol. 2019;10:714. https://doi.org/10.3389/fimmu.2019.00714 .
doi: 10.3389/fimmu.2019.00714
pubmed: 31024549
pmcid: 6465566
Muller-Durovic B, Grahlert J, Devine OP, Akbar AN, Hess C. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging. 2019;11:724–40. https://doi.org/10.18632/aging.101774 .
doi: 10.18632/aging.101774
pubmed: 30686790
pmcid: 6366961
Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front Immunol. 2019;10:3038. https://doi.org/10.3389/fimmu.2019.03038 .
doi: 10.3389/fimmu.2019.03038
pubmed: 32038612
Chan B, Kondo K, Freeman M, Ayers C, Montgomery J, Kansagara D. Pharmacotherapy for cocaine use disorder—a systematic review and meta-analysis. J Gen Intern Med. 2019;34:2858–73. https://doi.org/10.1007/s11606-019-05074-8 .
doi: 10.1007/s11606-019-05074-8
pubmed: 31183685
pmcid: 6854210
Haney M, Malcolm RJ, Babalonis S, Nuzzo PA, Cooper ZD, Bedi G, et al. Oral cannabidiol does not alter the subjective, reinforcing or cardiovascular effects of smoked cannabis. Neuropsychopharmacology 2016;41:1974–82. https://doi.org/10.1038/npp.2015.367 .
doi: 10.1038/npp.2015.367
pubmed: 26708108
pmcid: 4908634