GC-MS determination of the content of polycyclic aromatic hydrocarbons in bread and potato Tahdig prepared with the common edible oil.
Bread
Gas Chromatography-Mass Spectrometry
Oil
Polycyclic aromatic hydrocarbons
Potato
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
31 Jul 2021
31 Jul 2021
Historique:
received:
10
02
2021
accepted:
26
07
2021
entrez:
31
7
2021
pubmed:
1
8
2021
medline:
4
8
2021
Statut:
epublish
Résumé
The polycyclic aromatic hydrocarbon (PAH) content of the Tahdig of the breads and potatoes prepared with edible oil was determined by GC-MS. The Tahdigs of bread and potato were baked under the same condition (volume of any oil 40 cc, temperature 180 °C, time 30 min). Polycyclic aromatic hydrocarbon determination was performed by an Agilent 6890 N Gas chromatography with mass selective detector, equipped with a capillary column. The highest contents of PAHs in Tahdig of bread and Tahdig of potato were observed in canola with 550 ± 3.9 ng/kg and sesame with 408.3 ± 41 ng/kg. The mean of PAH content was significantly higher in the Tahdig of bread compared to the Tahdig of potato (p < 0.05). Among the 16 PAHs examined by GC/MS, 10 PAHs were detected. The amount of high molecular weight (HMW) PAHs were significantly more than low molecular weight (LMW) PAHs (p < 0.05). Benzo [b]fluoranthene and benz[a]anthracene concentrations were significantly more than the other detected compounds (p < 0.05). Due to high PAH contamination of both Tahdig groups, the consumption of Tahdig (any type) was not recommended.
Identifiants
pubmed: 34331145
doi: 10.1007/s10661-021-09347-w
pii: 10.1007/s10661-021-09347-w
doi:
Substances chimiques
Polycyclic Aromatic Hydrocarbons
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
540Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.
doi: 10.1016/j.ejpe.2015.03.011
Akbari-Adergani, B., Ahmadi, A., Jahedkhanki, G., Nodehi, R. N., & Sadighara, P. (2020). The comparative amount of acrylamide in Tahdig prepared with the most common edible liquid and solid oils. Current Nutrition & Food Science, 16(5), 776–780.
doi: 10.2174/1573401315666190823095851
Adeyeye, S. A. (2020). Polycyclic aromatic hydrocarbons in foods: A critical review. Current Nutrition & Food Science, 16(6), 866–873.
doi: 10.2174/1573401315666190215112216
Al-Rashdan, A., Helaleh, M. I., Nisar, A., Ibtisam, A., & Al-Ballam, Z. (2010). Determination of the levels of polycyclic aromatic hydrocarbons in toasted bread using gas chromatography mass spectrometry. International Journal of Analytical Chemistry, 2010.
Alomirah, H., Al-Zenki, S., Al-Hooti, S., Zaghloul, S., Sawaya, W., Ahmed, N., & Kannan, K. (2011). Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control, 22(12), 2028–2035.
doi: 10.1016/j.foodcont.2011.05.024
Baygi, F., Qorbani, M., Motlagh, M. E., Shafiee, G., Nouri, K., Ahadi, Z., Mahdavi-Gorab, A., Heshmat, R., & Kelishadi, R. (2020). Is frequency of potato and white rice consumption associated with cardiometabolic risk factors in children and adolescents: The CASPIAN-V study. BMC Cardiovascular Disorders, 20, 1–8.
doi: 10.1186/s12872-020-01524-y
Bogdanović, T., Pleadin, J., Petričević, S., Listeš, E., Sokolić, D., Marković, K., & Šimat, V. (2019). The occurrence of polycyclic aromatic hydrocarbons in fish and meat products of Croatia and dietary exposure. Journal of Food Composition and Analysis, 75, 49–60.
doi: 10.1016/j.jfca.2018.09.017
Chung, S., Yettella, R. R., Kim, J., Kwon, K., Kim, M., & Min, D. B. (2011). Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chemistry, 129(4), 1420–1426.
doi: 10.1016/j.foodchem.2011.05.092
Diggs, D. L., Huderson, A. C., Harris, K. L., Myers, J. N., Banks, L. D., Rekhadevi, P. V., & Ramesh, A. (2011). Polycyclic aromatic hydrocarbons and digestive tract cancers: A perspective. Journal of Environmental Science and Health, Part c, 29(4), 324–357.
doi: 10.1080/10590501.2011.629974
Dost, K., & İdeli, C. (2012). Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV–Vis detection. Food Chemistry, 133(1), 193–199.
doi: 10.1016/j.foodchem.2012.01.001
Farhadian, A., Jinap, S., Abas, F., & Sakar, Z. I. (2010). Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control, 21(5), 606–610.
doi: 10.1016/j.foodcont.2009.09.002
Gorji, M. E. H., Ahmadkhaniha, R., Moazzen, M., Yunesian, M., Azari, A., & Rastkari, N. (2016). Polycyclic aromatic hydrocarbons in Iranian Kebabs. Food Control, 60, 57–63.
doi: 10.1016/j.foodcont.2015.07.022
Hamidi, E. N., Hajeb, P., Selamat, J., & Razis, A. F. A. (2016). Polycyclic aromatic hydrocarbons (PAHs) and their bioaccessibility in meat: A tool for assessing human cancer risk. Asian Pacific Journal of Cancer Prevention, 17(1), 15–23.
doi: 10.7314/APJCP.2016.17.1.15
Hattemer-Frey, H. A., & Travis, C. C. (1991). Benzo-a-pyrene: Environmental partitioning and human exposure. Toxicology and Industrial Health, 7(3), 141–157.
doi: 10.1177/074823379100700303
Karimi, S., Goudarzi, F., Pourmehdi, M., Heydarpour, F., Mahaki, B., & Nachvak, S. M. (2021). Fried carbohydrate-rich food as a potential source of malondialdehyde and acrylamide: a consumption pattern to evaluate the risk of cancer in population. Research Square.
Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons A Review. Cogent Environmental Science, 3(1), 1339841.
doi: 10.1080/23311843.2017.1339841
Nisha, A., Dinesh Kumar, V., Arivudainambi, S., Umer, M., & Khan, M. (2015). Polycyclic aromatic hydrocarbons in processed meats: A toxicological perspective. Research Journal of Chemistry and Environment, 19(6), 72–76.
Pandey, M. K., Mishra, K. K., Khanna, S. K., & Das, M. (2004). Detection of polycyclic aromatic hydrocarbons in commonly consumed edible oils and their likely intake in the Indian population. Journal of the American Oil Chemists’ Society, 81(12), 1131–1136.
doi: 10.1007/s11746-004-1030-4
Paris, A., Ledauphin, J., Poinot, P., & Gaillard, J.-L. (2018). Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin analysis and occurrence. Environmental Pollution, 234, 96–106.
doi: 10.1016/j.envpol.2017.11.028
Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., & Nishigaki, I. (2015). Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine, 5(3), 182–189.
doi: 10.1016/S2221-1691(15)30003-4
Rey-Salgueiro, L., García-Falcón, M. S., Martìnez-Carballo, E., & Simal-Gàndara, J. (2008). Effects of toasting procedures on the levels of polycyclic aromatic hydrocarbons in toasted bread. Food Chemistry, 108(2), 607–615.
doi: 10.1016/j.foodchem.2007.11.026
Rose, M., Holland, J., Dowding, A., Petch, S. R., White, S., Fernandes, A., & Mortimer, D. (2015). Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food and Chemical Toxicology, 78, 1–9.
doi: 10.1016/j.fct.2014.12.018
Sánchez‐Arévalo, C. M., Olmo‐García, L., Fernández‐Sánchez, J. F., & Carrasco‐Pancorbo, A. (2020). Polycyclic aromatic hydrocarbons in edible oils: An overview on sample preparation, determination strategies, and relative abundance of prevalent compounds. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3528-3573.
Shahrbabki, P. E., Hajimohammadi, B., Shoeibi, S., Elmi, M., Yousefzadeh, A., Conti, G. O., & Khaneghah, A. M. (2018). Probabilistic non-carcinogenic and carcinogenic risk assessments (Monte Carlo simulation method) of the measured acrylamide content in Tah-dig using QuEChERS extraction and UHPLC-MS/MS. Food and Chemical Toxicology, 118, 361–370.
doi: 10.1016/j.fct.2018.05.038
Singh, L., Varshney, J. G., & Agarwal, T. (2016). Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chemistry, 199, 768–781.
doi: 10.1016/j.foodchem.2015.12.074
Sirot, V., Rivière, G., Leconte, S., Vin, K., Traore, T., Jean, J., & Hulin, M. (2019). French infant total diet study: Dietary exposure to heat-induced compounds (acrylamide furan and polycyclic aromatic hydrocarbons) and associated health risks. Food and Chemical Toxicology, 130, 308–316.
doi: 10.1016/j.fct.2019.05.009
Sun, Y., Wu, S., & Gong, G. (2019). Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends in Food Science & Technology, 83, 86–98.
doi: 10.1016/j.tifs.2018.11.015
Wang, S. W., Hsu, K. H., Huang, S. C., Tseng, S. H., Wang, D. Y., & Cheng, H. F. (2019). Determination of polycyclic aromatic hydrocarbons (PAHs) in cosmetic products by gas chromatography-tandem mass spectrometry. Journal of Food and Drug Analysis, 27(3), 815–824.
Yousefi, M., Shemshadi, G., Khorshidian, N., Ghasemzadeh-Mohammadi, V., Fakhri, Y., Hosseini, H., & Khaneghah, A. M. (2018). Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: A risk assessment study. Food and Chemical Toxicology, 118, 480–489.
doi: 10.1016/j.fct.2018.05.063
Yurchenko, S., & Mölder, U. (2005). The determination of polycyclic aromatic hydrocarbons in smoked fish by gas chromatography mass spectrometry with positive-ion chemical ionization. Journal of Food Composition and Analysis, 18(8), 857–869.
doi: 10.1016/j.jfca.2004.11.004
Ziegenhals, K., Speer, K., & Jira, W. (2009). Polycyclic aromatic hydrocarbons (PAH) in chocolate on the German market. Journal Für Verbraucherschutz Und Lebensmittelsicherheit, 4(2), 128–135.
doi: 10.1007/s00003-009-0478-1