GC-MS determination of the content of polycyclic aromatic hydrocarbons in bread and potato Tahdig prepared with the common edible oil.


Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
31 Jul 2021
Historique:
received: 10 02 2021
accepted: 26 07 2021
entrez: 31 7 2021
pubmed: 1 8 2021
medline: 4 8 2021
Statut: epublish

Résumé

The polycyclic aromatic hydrocarbon (PAH) content of the Tahdig of the breads and potatoes prepared with edible oil was determined by GC-MS. The Tahdigs of bread and potato were baked under the same condition (volume of any oil 40 cc, temperature 180 °C, time 30 min). Polycyclic aromatic hydrocarbon determination was performed by an Agilent 6890 N Gas chromatography with mass selective detector, equipped with a capillary column. The highest contents of PAHs in Tahdig of bread and Tahdig of potato were observed in canola with 550 ± 3.9 ng/kg and sesame with 408.3 ± 41 ng/kg. The mean of PAH content was significantly higher in the Tahdig of bread compared to the Tahdig of potato (p < 0.05). Among the 16 PAHs examined by GC/MS, 10 PAHs were detected. The amount of high molecular weight (HMW) PAHs were significantly more than low molecular weight (LMW) PAHs (p < 0.05). Benzo [b]fluoranthene and benz[a]anthracene concentrations were significantly more than the other detected compounds (p < 0.05). Due to high PAH contamination of both Tahdig groups, the consumption of Tahdig (any type) was not recommended.

Identifiants

pubmed: 34331145
doi: 10.1007/s10661-021-09347-w
pii: 10.1007/s10661-021-09347-w
doi:

Substances chimiques

Polycyclic Aromatic Hydrocarbons 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

540

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.
doi: 10.1016/j.ejpe.2015.03.011
Akbari-Adergani, B., Ahmadi, A., Jahedkhanki, G., Nodehi, R. N., & Sadighara, P. (2020). The comparative amount of acrylamide in Tahdig prepared with the most common edible liquid and solid oils. Current Nutrition & Food Science, 16(5), 776–780.
doi: 10.2174/1573401315666190823095851
Adeyeye, S. A. (2020). Polycyclic aromatic hydrocarbons in foods: A critical review. Current Nutrition & Food Science, 16(6), 866–873.
doi: 10.2174/1573401315666190215112216
Al-Rashdan, A., Helaleh, M. I., Nisar, A., Ibtisam, A., & Al-Ballam, Z. (2010). Determination of the levels of polycyclic aromatic hydrocarbons in toasted bread using gas chromatography mass spectrometry. International Journal of Analytical Chemistry, 2010.
Alomirah, H., Al-Zenki, S., Al-Hooti, S., Zaghloul, S., Sawaya, W., Ahmed, N., & Kannan, K. (2011). Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control, 22(12), 2028–2035.
doi: 10.1016/j.foodcont.2011.05.024
Baygi, F., Qorbani, M., Motlagh, M. E., Shafiee, G., Nouri, K., Ahadi, Z., Mahdavi-Gorab, A., Heshmat, R., & Kelishadi, R. (2020). Is frequency of potato and white rice consumption associated with cardiometabolic risk factors in children and adolescents: The CASPIAN-V study. BMC Cardiovascular Disorders, 20, 1–8.
doi: 10.1186/s12872-020-01524-y
Bogdanović, T., Pleadin, J., Petričević, S., Listeš, E., Sokolić, D., Marković, K., & Šimat, V. (2019). The occurrence of polycyclic aromatic hydrocarbons in fish and meat products of Croatia and dietary exposure. Journal of Food Composition and Analysis, 75, 49–60.
doi: 10.1016/j.jfca.2018.09.017
Chung, S., Yettella, R. R., Kim, J., Kwon, K., Kim, M., & Min, D. B. (2011). Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chemistry, 129(4), 1420–1426.
doi: 10.1016/j.foodchem.2011.05.092
Diggs, D. L., Huderson, A. C., Harris, K. L., Myers, J. N., Banks, L. D., Rekhadevi, P. V., & Ramesh, A. (2011). Polycyclic aromatic hydrocarbons and digestive tract cancers: A perspective. Journal of Environmental Science and Health, Part c, 29(4), 324–357.
doi: 10.1080/10590501.2011.629974
Dost, K., & İdeli, C. (2012). Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV–Vis detection. Food Chemistry, 133(1), 193–199.
doi: 10.1016/j.foodchem.2012.01.001
Farhadian, A., Jinap, S., Abas, F., & Sakar, Z. I. (2010). Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control, 21(5), 606–610.
doi: 10.1016/j.foodcont.2009.09.002
Gorji, M. E. H., Ahmadkhaniha, R., Moazzen, M., Yunesian, M., Azari, A., & Rastkari, N. (2016). Polycyclic aromatic hydrocarbons in Iranian Kebabs. Food Control, 60, 57–63.
doi: 10.1016/j.foodcont.2015.07.022
Hamidi, E. N., Hajeb, P., Selamat, J., & Razis, A. F. A. (2016). Polycyclic aromatic hydrocarbons (PAHs) and their bioaccessibility in meat: A tool for assessing human cancer risk. Asian Pacific Journal of Cancer Prevention, 17(1), 15–23.
doi: 10.7314/APJCP.2016.17.1.15
Hattemer-Frey, H. A., & Travis, C. C. (1991). Benzo-a-pyrene: Environmental partitioning and human exposure. Toxicology and Industrial Health, 7(3), 141–157.
doi: 10.1177/074823379100700303
Karimi, S., Goudarzi, F., Pourmehdi, M., Heydarpour, F., Mahaki, B., & Nachvak, S. M. (2021). Fried carbohydrate-rich food as a potential source of malondialdehyde and acrylamide: a consumption pattern to evaluate the risk of cancer in population. Research Square.
Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons A Review. Cogent Environmental Science, 3(1), 1339841.
doi: 10.1080/23311843.2017.1339841
Nisha, A., Dinesh Kumar, V., Arivudainambi, S., Umer, M., & Khan, M. (2015). Polycyclic aromatic hydrocarbons in processed meats: A toxicological perspective. Research Journal of Chemistry and Environment, 19(6), 72–76.
Pandey, M. K., Mishra, K. K., Khanna, S. K., & Das, M. (2004). Detection of polycyclic aromatic hydrocarbons in commonly consumed edible oils and their likely intake in the Indian population. Journal of the American Oil Chemists’ Society, 81(12), 1131–1136.
doi: 10.1007/s11746-004-1030-4
Paris, A., Ledauphin, J., Poinot, P., & Gaillard, J.-L. (2018). Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin analysis and occurrence. Environmental Pollution, 234, 96–106.
doi: 10.1016/j.envpol.2017.11.028
Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., & Nishigaki, I. (2015). Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine, 5(3), 182–189.
doi: 10.1016/S2221-1691(15)30003-4
Rey-Salgueiro, L., García-Falcón, M. S., Martìnez-Carballo, E., & Simal-Gàndara, J. (2008). Effects of toasting procedures on the levels of polycyclic aromatic hydrocarbons in toasted bread. Food Chemistry, 108(2), 607–615.
doi: 10.1016/j.foodchem.2007.11.026
Rose, M., Holland, J., Dowding, A., Petch, S. R., White, S., Fernandes, A., & Mortimer, D. (2015). Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food and Chemical Toxicology, 78, 1–9.
doi: 10.1016/j.fct.2014.12.018
Sánchez‐Arévalo, C. M., Olmo‐García, L., Fernández‐Sánchez, J. F., & Carrasco‐Pancorbo, A. (2020). Polycyclic aromatic hydrocarbons in edible oils: An overview on sample preparation, determination strategies, and relative abundance of prevalent compounds. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3528-3573.
Shahrbabki, P. E., Hajimohammadi, B., Shoeibi, S., Elmi, M., Yousefzadeh, A., Conti, G. O., & Khaneghah, A. M. (2018). Probabilistic non-carcinogenic and carcinogenic risk assessments (Monte Carlo simulation method) of the measured acrylamide content in Tah-dig using QuEChERS extraction and UHPLC-MS/MS. Food and Chemical Toxicology, 118, 361–370.
doi: 10.1016/j.fct.2018.05.038
Singh, L., Varshney, J. G., & Agarwal, T. (2016). Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chemistry, 199, 768–781.
doi: 10.1016/j.foodchem.2015.12.074
Sirot, V., Rivière, G., Leconte, S., Vin, K., Traore, T., Jean, J., & Hulin, M. (2019). French infant total diet study: Dietary exposure to heat-induced compounds (acrylamide furan and polycyclic aromatic hydrocarbons) and associated health risks. Food and Chemical Toxicology, 130, 308–316.
doi: 10.1016/j.fct.2019.05.009
Sun, Y., Wu, S., & Gong, G. (2019). Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends in Food Science & Technology, 83, 86–98.
doi: 10.1016/j.tifs.2018.11.015
Wang, S. W., Hsu, K. H., Huang, S. C., Tseng, S. H., Wang, D. Y., & Cheng, H. F. (2019). Determination of polycyclic aromatic hydrocarbons (PAHs) in cosmetic products by gas chromatography-tandem mass spectrometry. Journal of Food and Drug Analysis, 27(3), 815–824.
Yousefi, M., Shemshadi, G., Khorshidian, N., Ghasemzadeh-Mohammadi, V., Fakhri, Y., Hosseini, H., & Khaneghah, A. M. (2018). Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: A risk assessment study. Food and Chemical Toxicology, 118, 480–489.
doi: 10.1016/j.fct.2018.05.063
Yurchenko, S., & Mölder, U. (2005). The determination of polycyclic aromatic hydrocarbons in smoked fish by gas chromatography mass spectrometry with positive-ion chemical ionization. Journal of Food Composition and Analysis, 18(8), 857–869.
doi: 10.1016/j.jfca.2004.11.004
Ziegenhals, K., Speer, K., & Jira, W. (2009). Polycyclic aromatic hydrocarbons (PAH) in chocolate on the German market. Journal Für Verbraucherschutz Und Lebensmittelsicherheit, 4(2), 128–135.
doi: 10.1007/s00003-009-0478-1

Auteurs

Behrouz Akbari-Adergani (B)

Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.

Kosar Mahmood-Babooi (K)

Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Ali Salehi (A)

Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Gholamreza Jahed Khaniki (GJ)

Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Nabi Shariatifar (N)

Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Parisa Sadighara (P)

Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran. sadighara@farabi.tums.ac.ir.

Tayebeh Zeinali (T)

Social Determinants of Health Research Center, Department of Public Health, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran. ta.zeinaly@gmail.com.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal

Classifications MeSH