Nanoparticles for In Vivo Lifetime Multiplexed Imaging.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 31 7 2021
pubmed: 1 8 2021
medline: 2 9 2021
Statut: ppublish

Résumé

Lifetime multiplexed imaging refers to the simultaneous labeling of different structures with fluorescent probes that present identical photoluminescence spectra and distinct fluorescence lifetimes. This technique allows extracting quantitative information from multichannel in vivo fluorescence imaging. In vivo lifetime multiplexed imaging requires fluorophores with excitation and emission bands in the near-infrared (NIR) and tunable fluorescence lifetimes, plus an imaging system capable of time-resolved image acquisition and analysis.

Identifiants

pubmed: 34331289
doi: 10.1007/978-1-0716-1593-5_15
doi:

Substances chimiques

Fluorescent Dyes 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

239-251

Informations de copyright

© 2021. Springer Science+Business Media, LLC, part of Springer Nature.

Références

Mansfield JR, Gossage KW, Hoyt CC, Levenson RM (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10(4):041207
doi: 10.1117/1.2032458
Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46
doi: 10.1016/S0958-1669(02)00282-3
Zhu H, Fan J, Du J, Peng X (2016) Fluorescent probes for sensing and imaging within specific cellular organelles. Acc Chem Res 49(10):2115–2126
doi: 10.1021/acs.accounts.6b00292
Ettinger A, Wittmann T (2014) Fluorescence live cell imaging. In: Waters JC, Wittmann T (eds) Quantitative imaging in cell biology, Methods in cell biology, vol 123. Elsevier Academic Press Inc, San Diego, pp 77–94
doi: 10.1016/B978-0-12-420138-5.00005-7
Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010
doi: 10.1038/s41551-016-0010
Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4(11):710–711
doi: 10.1038/nnano.2009.326
Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317
doi: 10.1038/86684
Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, Zhao S, Atochin DN, Huang PL, Andreasson KI, Kuo CJ, Dai H (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8:723
doi: 10.1038/nphoton.2014.166
del Rosal B, Villa I, Jaque D, Sanz-Rodríguez F (2016) In vivo autofluorescence in the biological windows: the role of pigmentation. J Biophotonics 9(10):1059–1067
doi: 10.1002/jbio.201500271
Villa I, Vedda A, Cantarelli I, Pedroni M, Piccinelli F, Bettinelli M, Speghini A, Quintanilla M, Vetrone F, Rocha U, Jacinto C, Carrasco E, Rodríguez F, Juarranz Á, del Rosal B, Ortgies D, Gonzalez P, Solé J, García D (2015) 1.3 μm emitting SrF
doi: 10.1007/s12274-014-0549-1
Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37–R61
doi: 10.1088/0031-9155/58/11/R37
Bashkatov A, Genina E, Kochubey V, Tuchin V (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38(15):2543
doi: 10.1088/0022-3727/38/15/004
Ortgies DH, Tan M, Ximendes EC, del Rosal B, Hu J, Xu L, Wang X, Martín Rodríguez E, Jacinto C, Fernandez N, Chen G, Jaque D (2018) Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano 12(5):4362–4368
doi: 10.1021/acsnano.7b09189
Fan Y, Wang P, Lu Y, Wang R, Zhou L, Zheng X, Li X, Piper JA, Zhang F (2018) Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat Nanotechnol 13:941–946
doi: 10.1038/s41565-018-0221-0
Siegel J, Elson DS, Webb SE, Lee KB, Vlandas A, Gambaruto GL, Levêque-Fort S, Lever MJ, Tadrous PJ, Stamp GW (2003) Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles. Appl Opt 42(16):2995–3004
doi: 10.1364/AO.42.002995
Hildebrandt IJ, Su H, Weber WA (2008) Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49(1):17–26
doi: 10.1093/ilar.49.1.17
Lee KB, Siegel J, Webb S, Leveque-Fort S, Cole M, Jones R, Dowling K, Lever M, French P (2001) Application of the stretched exponential function to fluorescence lifetime imaging. Biophys J 81(3):1265–1274
doi: 10.1016/S0006-3495(01)75784-0
Jang C, Lee JH, Sahu A, Tae G (2015) The synergistic effect of folate and RGD dual ligand of nanographene oxide on tumor targeting and photothermal therapy in vivo. Nanoscale 7(44):18584–18594
doi: 10.1039/C5NR05067G
Bodunov EN, Danilov VV, Panfutova AS, Simoes Gamboa AL (2016) Room-temperature luminescence decay of colloidal semiconductor quantum dots: nonexponentiality revisited. Ann Phys 528(3–4):272–277
doi: 10.1002/andp.201500350
Laherrere J, Sornette D (1998) Stretched exponential distributions in nature and economy:“fat tails” with characteristic scales. Eur Phys J B 2(4):525–539
doi: 10.1007/s100510050276
Lindsey C, Patterson G (1980) Detailed comparison of the Williams–Watts and Cole–Davidson functions. J Chem Phys 73(7):3348–3357
doi: 10.1063/1.440530
Zheng X, Zhu X, Lu Y, Zhao J, Feng W, Jia G, Wang F, Li F, Jin D (2016) High-contrast visualization of upconversion luminescence in mice using time-gating approach. Anal Chem 88(7):3449–3454
doi: 10.1021/acs.analchem.5b04626
Dowling K, Dayel M, Lever M, French P, Hares J, Dymoke-Bradshaw A (1998) Fluorescence lifetime imaging with picosecond resolution for biomedical applications. Opt Lett 23(10):810–812
doi: 10.1364/OL.23.000810
Salihoglu O, Kakenov N, Balci O, Balci S, Kocabas C (2016) Graphene as a reversible and spectrally selective fluorescence quencher. Sci Rep 6:33911
doi: 10.1038/srep33911
Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson M (1992) Fluorescence lifetime imaging. Anal Biochem 202(2):316–330
doi: 10.1016/0003-2697(92)90112-K
Alcala JR, Gratton E, Prendergast F (1987) Fluorescence lifetime distributions in proteins. Biophys J 51(4):597–604
doi: 10.1016/S0006-3495(87)83384-2
Alcala JR (1994) The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions. J Chem Phys 101(6):4578–4584
doi: 10.1063/1.467445

Auteurs

Erving Ximendes (E)

Nanomaterials for BioImaging Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain.
Nanomaterials for BioImaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.

Emma Martín Rodríguez (E)

Nanomaterials for BioImaging Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain.
Fluorescence Imaging Group, Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.

Dirk H Ortgies (DH)

Nanomaterials for BioImaging Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain.
Nanomaterials for BioImaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.

Meiling Tan (M)

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.

Guanying Chen (G)

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.

Blanca Del Rosal (B)

ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Australia. blanca.delrosal@rmit.edu.au.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH